检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite pipeline输出的结果图片进行对比,在这里保证输入图片及文本提示词一致。如果差异较为明显可以进行模型精度调优。 确认性能是否满足要求
标注多个标签,是否可针对一个标签进行识别? 数据标注时若标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: Standard数据管理
大类智能任务。可通过指定“type”参数来单独查询某类任务的列表。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例
推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
ketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下,图片的目录结构如:“/bucketName/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 图像分类数据集要求将标
使用订阅算法训练结束后没有显示模型评估结果 问题现象 AI Gallery中的YOLOv5算法,训练结束后没有显示模型评估结果。 原因分析 未标注的图片过多,导致没有模型评估结果。 处理方法 对所有训练数据进行标注。 父主题: 预置算法运行故障
可以两个账号同时进行一个数据集的标注吗? 可以多人同时标注,但多人同时对同一张图片标注的话,只会以最后一个保存的人的标注结果为最终标注结果。建议轮流标注并及时保存标注结果。 父主题: Standard数据管理
数据标注中,难例集如何定义?什么情况下会被识别为难例? 难例是指难以识别的样本,目前只有图像分类和检测支持难例。 父主题: Standard数据管理
tB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。 处理方法 使用单标签分类的数据集进行训练。 父主题: 数据集问题导致训练失败
化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。 使用自动学习功能构建模型的端到端示例,
imshow在jupyter这样的client/server环境下存在问题。 而matplotlib不存在这个问题。 解决方法 参考如下示例进行图片显示。注意opencv加载的是BGR格式, 而matplotlib显示的是RGB格式。 Python语言: 1 2 3 4 5 6 from
imshow在jupyter这样的client/server环境下存在问题。 而matplotlib不存在这个问题。 解决方法 参考如下示例进行图片显示。注意opencv加载的是BGR格式, 而matplotlib显示的是RGB格式。 Python语言: 1 2 3 4 5 6 from
否,执行2。 检查存储图片数据的OBS路径。是否满足如下要求: 此OBS目录下未存放其他文件夹。 文件名称中无特殊字符,如~`@#$%^&*{}[]:;+=<>/ 如果OBS路径符合要求,请您按照服务具体情况执行3。 自动学习项目不同导致的失败原因可能不同。 图像识别训练失败请检查是否存在损坏图片,如有请进行替换或删除。
自动学习中部署上线是将模型部署为什么类型的服务? 自动学习中部署上线是将模型部署为在线服务,您可以添加图片或代码进行服务测试,也可以使用URL接口调用。 部署成功后,您也可以在ModelArts管理控制台的“部署上线 > 在线服务”页面中,查看到正在运行的服务。您也可以在此页面停止服务或删除服务。
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
Standard数据管理 添加图片时,图片大小有限制吗? 数据集图片无法显示,如何解决? 如何将多个物体检测的数据集合并成一个数据集? 导入数据集失败 表格类型的数据集如何标注 本地标注的数据,导入ModelArts需要做什么? 为什么通过Manifest文件导入失败? 标注结果存储在哪里?
our prompt},其中id表示对话中的第几张图片。"img_path"可以是本地的图片或网络地址。如果是本地图片,容器需要有权限读取图片。网络图片服务端会自动下载。 messages的样例如下: # body参考 # 图片存放本地示例 { "messages": [
JupyterLab是一个交互式的开发环境,可以使用它编写Notebook、操作终端、编辑MarkDown文本、打开交互模式、查看csv文件及图片等功能。可以说,JupyterLab是开发者们下一阶段更主流的开发环境。 ModelArts支持通过JupyterLab工具在线打开Not
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。