检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
针对用户自己编写训练脚本或自定义镜像方式创建的训练作业,则需要在您的训练代码中添加评估代码,才可以在训练作业结束后查看相应的评估诊断建议。 只支持验证集的数据格式为图片。 目前,仅如下常用框架的训练脚本支持添加评估代码。 TF-1.13.1-python3.6 TF-2.1.0-python3.6 PyTorch-1
管理数据集文件 预览文件 在数据集详情页,选择“数据集文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在数据集详情页,选择“数据集文件”页签。单击操作列的“下载”,选择保存路径单击“确认”,即可下载文件到本地。 删除文件
Files按钮,打开文件上传窗口,选择左侧的进入远端文件上传界面。 图1 上传文件图标 图2 进入远端文件上传界面 输入有效的远端文件URL后,系统会自动识别上传文件名称,单击“上传”,开始上传文件。 图3 输入有效的远端文件URL 图4 远端文件上传成功 异常处理 远端文件上传失败。可能是网络
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_type Integer 导入方式。可选值如下: 0:目录导入 1:按manifest文件导入
yter Notebook的下一代产品,可以使用它编写Notebook、操作终端、编辑MarkDown文本、打开交互模式、查看csv文件及图片等功能。 父主题: Standard功能介绍
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_type Integer 导入方式。可选值如下: 0:目录导入 1:按manifest文件导入
管理模型文件 预览文件 在模型详情页,选择“模型文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在模型详情页,选择“模型文件”页签。单击操作列的“下载”,即可下载文件到本地。 删除文件 在模型详情页,选择“模型文
AI框架版本升级,使用了新版本算子。 例如:每半年对模型进行一次变更,变更的内容包含模型结构,并升级AI框架。 - 尺寸要求 超分前产生的图片尺寸要求: 512*512 720*720 1080 *1080 1920*1920 (shape过大可能导致性能下降) - 父主题: GPU推理业务迁移至昇腾的通用指导
使用场景 如高性能计算、媒体处理、文件共享和内容管理和Web服务等。 说明: 高性能计算:主要是高带宽的需求,用于共享文件存储,比如基因测序、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。 如高性能计算、企业核心集群应用、企业应用系统和开发测试等。
提供18+数据增强算子,帮助用户扩增数据,增加训练用的数据量。 帮助用户提高数据的质量。 提供图像、文本、音频、视频等多种格式数据的预览,帮助用户识别数据质量。 提供对数据进行多维筛选的能力,用户可以根据样本属性、标注信息等进行样本筛选。 提供12+标注工具,方便用户进行精细化、场景化和专业化的数据标注。
部署等操作,并且提供AI Gallery功能,能够在市场内与其他开发者分享模型。 ModelArts支持图像分类、物体检测、视频分析、语音识别、产品推荐、异常检测等多种AI应用场景。 图1 ModelArts架构 父主题: 一般性问题
AI应用支持部署的服务类型。 版本数量 AI应用的版本数量。 请求模式 在线服务的请求模式。 同步请求:单次推理,可同步返回结果(约<60s)。例如: 图片、较小视频文件。 异步请求:单次推理,需要异步处理返回结果(约>60s)。例如: 实时视频推理、大视频文件。 创建时间 AI应用的创建时间。
准备数据集 进入AI Gallery,搜索8类常见生活垃圾图片数据集。 单击“下载”,选择云服务区域“华北-北京四”,单击“确定”进入下载详情页。 填写如下参数: 下载方式:ModelArts数据集。 目标区域:华北-北京四。 数据类型:图片。 数据集输出位置:用来存放输出的数据标注的相关
Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入,然后和一个随机高斯噪声,一起输入到U-Net网络中进行不断去噪。在经过多次迭代后,最终模型将输出和文字相关的图像。 SD1.5 Finetune是指在已经训练好的SD1
面向熟悉代码编写和调测的AI工程师 ModelArts Standard推理部署 使用Standard一键完成商超商品识别模型部署 本案例以“商超商品识别”模型为例,介绍从AI Gallery订阅模型,一键部署到ModelArts Standard,并进行在线推理预测的体验过程。
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
huaweicloud.com/repository/pypi/simple 图4 安装resnet依赖 准备数据集。 本样例使用的数据集为类别数为五类的花卉识别数据集,下载数据集并解压数据到工程目录。新建dataset文件夹,将解压后数据集保存在dataset文件夹下。 图5 准备数据集 配置PyCharm解释器和入参。
单条音频时长应大于1s,大小不能超过4MB。 适当增加训练数据,会提升模型的精度。声音分类建议每类音频至少20条,每类音频总时长至少5分钟。 建议训练数据和真实识别场景的声音保持一致并且每类的音频尽量覆盖真实环境的所有场景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样率和采样精度保持一致。
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_samples 否 Boolean 是否导入样本。可选值如下: true:导入样本(默认值)