检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当AI应用状态变为正常时,表示创建完成。 图6 AI应用创建完成 步骤五 部署服务 单击AI应用名称,进入AI应用详情页,单击部署在线服务。 图7 部署在线服务 填写如下服务部署参数。 名称: 服务的名称,按照实际需要填写 是否自动停止:如果配置自动停止,服务会按照配置的时间自动停止。如果需要常驻的服务,建议关掉该按钮。
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
结构如下: 表1 ModelStep 属性 描述 是否必填 数据类型 name 模型注册节点的名称。只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符,一个Workflow里的两个step名称不能重复 是 str inputs 模型注册节点的输入列表
导出数据为新数据集 登录ModelArts管理控制台,在左侧菜单栏中选择“资产管理>数据集”,进入“数据集”管理页面。 在数据集列表中,选择“图片”类型的数据集,单击数据集名称进入“数据集概览页”。 在“数据集概览页”,单击右上角“导出 ”。在弹出的“导出”对话框中,填写相关信息,然后单击“确定”,开始执行导出操作。
出现ModelArts.XXXX类型的报错,表示请求在Dispatcher出现问题而被拦截。 常见报错: 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4503 当使用推理的镜像并且出现MR.XXXX类型的错误时
参数说明如下: --width :生成图片的宽 --height: 生成图片的长 --num_inference_steps:推理步数 --dynamo: 使用图模式。如果使用该参数,则首次编译时间较长,请耐心等待。 推理完成后,生成的图片image_1024x688.png保存在当前路径下,如下图所示。
VPC直连的高速访问通道,目前只支持访问在线服务。 因流量限控,获取在线服务的IP和端口号次数有限制,每个主账号租户调用次数不超过2000次/分钟,每个子账号租户不超过20次/分钟。 目前仅支持自定义镜像导入模型,部署的服务支持高速访问通道。 操作步骤 使用VPC直连的高速访问通道访问在线服务,基本操作步骤如下:
编辑完成后,单击“确认”保存修改。 管理数据集文件 预览文件 在数据集详情页,选择“数据集文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在数据集详情页,选择“数据集文件”页签。单击操作列的“下载”,选择保存路径单击“确认”,即可下载文件到本地。
可以在创建训练作业页面添加标签,也可以在已经创建完成的训练作业详情页面的“标签”页签中添加标签。 在ModelArts的在线服务中添加标签。 可以在创建在线服务页面添加标签,也可以在已经创建完成的在线服务详情页面的“标签”页签中添加标签。 在ModelArts的专属资源池中添加标签。 可以在创建ModelArts
--image-input-shape:输入图片维度,当前不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下:
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。
例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。
导出数据为新数据集 登录ModelArts管理控制台,在左侧菜单栏中选择“资产管理>数据集”,进入“数据集”管理页面。 在数据集列表中,选择“图片”类型的数据集,单击数据集名称进入“数据集概览页”。 在“数据集概览页”,单击右上角“导出 ”。在弹出的“导出”对话框中,填写相关信息,然后单击“确定”,开始执行导出操作。
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
POST \ 在线服务地址 \ -F images=@test.jpg 返回 {"mnist_result": 7} 在上面的代码示例中,完成了将用户表单输入的图片的大小调整,转换为可以适配模型输入的shape。首先通过Pillow库读取“32×32”的图片,调整图片大小为“1×7
在MaaS体验模型服务 在ModelArts Studio大模型即服务平台,运行中的模型服务可以在“模型体验”页面在线体验模型服务的推理效果。 前提条件 在“模型部署”的服务列表存在“运行中”的模型服务。 操作步骤 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
监控安全风险 ModelArts支持监控ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作。 云监控可以帮助用户更好地了解服务和模型的各项性能指标。 详细内容请参见ModelArts支持的监控指标。 父主题: 安全
模型镜像。 服务运维阶段,先利用镜像构建模型,接着部署模型为在线服务,然后可在云监控服务(CES)中获得ModelArts推理在线服务的监控数据,最后可配置告警规则实现实时告警通知。 业务运行阶段,先将业务系统对接在线服务请求,然后进行业务逻辑处理和监控设置。 图1 推理服务的端到端运维流程图
其他参数与正常启服务一致即可。具体参考本文单机场景下OpenAI服务的API接口启动在线推理服务方式。 推理请求测试 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见启动在线推理服务。 通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker