检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
导入的OBS路径或Manifest路径。 导入Manifest时,path必须精确到具体Manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、图像分割、文本分类、声音分类和表格数据集。 字符限制:不允许出现的特殊字符有换行符(\n)、回车符(\r)、制表符(\t)。
rate增大的e2e结果变化走势图。 右下图为满足SLO要求下两种模式的吞吐变化曲线。 手动配比调优步骤 跑出一至多个混推实例,并使用脚本绘制各个验证结果。 分析混推图片结果,判断当前实例个数下是否会有收益。调优经验:混推模式下全量能力大于增量能力时,PD分离部署会有收益。 如上图所示为Qwen2.5 32
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
的便利和性能提升。Ascend-vLLM可广泛应用于各种大模型推理任务,特别是在需要高性能和高效率的场景中,如自然语言处理、图像生成和语音识别等。 Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。 易开
的便利和性能提升。Ascend-vLLM可广泛应用于各种大模型推理任务,特别是在需要高性能和高效率的场景中,如自然语言处理、图像生成和语音识别等。 Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。 易开
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
据,并可以通过创建标注任务进行数据标注。 文件型数据标注状态 数据标注状态分为“未标注”和“已标注”。 未标注:仅导入标注对象(指待标注的图片,文本等),不导入标注内容(指标注结果信息)。 已标注:同时导入标注对象和标注内容,当前“自由格式”的数据集不支持导入标注内容。 为了确保
t-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav的识别结果如下: 图2 测试音频识别结果 步骤九:在Aishell1测试集上测试 python infer.py --model_path 模型文件所在的绝对路径
Gallery仓库且支持多个文件同时上传。 单个仓库的容量上限为50GB。 支持管理托管的资产文件,例如在线预览、下载、删除文件。 只支持预览大小不超过10MB、格式为文本类或图片类的文件。 支持编辑资产介绍。每个资产介绍可分为基础设置和使用描述。 基础设置部分包含了该资产所有重要的结构化元数据信息。选择填入的信息将
选择数据所在OBS桶的存储区域,以控制台实际可选值为准。 存储位置 选择待发布数据集所在对象存储服务(OBS)的路径。 数据类型 至少选择一个数据集类型的标签。 可选标签:图片、音频、视频、文本、表格、其他 许可证类型 根据业务需求和数据集类型选择合适的许可证类型。 单击许可证类型后面的可以查看许可证详情。 谁可以看
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
--image-input-shape:输入图片维度,当前不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下:
Gallery仓库且支持多个文件同时上传。 单个仓库的容量上限为50GB。 支持管理托管的资产文件,例如在线预览、下载、删除文件。 只支持预览大小不超过10MB、格式为文本类或图片类的文件。 支持编辑资产介绍。每个资产介绍可分为基础设置和使用描述。 基础设置部分包含了该资产所有重要的结构化元数据信息。选择填入的信息将
json # json文件 │ └── new_single_bar # 图片目录 │ └── single_bar_1_1000.jpg │
placeholder_type=wf.PlaceholderType.INT, default=64, description="每步训练的图片数量(单卡)")), wf.AlgorithmParameters(name="eval_batch_size",
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
placeholder_type=wf.PlaceholderType.INT, default=64, description="每步训练的图片数量(单卡)")), wf.AlgorithmParameters(name="eval_batch_size",
返回 {"mnist_result": 7} 在上面的代码示例中,完成了将用户表单输入的图片的大小调整,转换为可以适配模型输入的shape。首先通过Pillow库读取“32×32”的图片,调整图片大小为“1×784”以匹配模型输入。在后续处理中,转换模型输出为列表,用于Restful接口输出展示。
huaweicloud.com/repository/pypi/simple 图4 安装resnet依赖 准备数据集。 本样例使用的数据集为类别数为五类的花卉识别数据集,下载数据集并解压数据到工程目录。新建dataset文件夹,将解压后数据集保存在dataset文件夹下。 图5 准备数据集 配置PyCharm解释器和入参。