检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在线检索MRS集群日志 MRS集群Manager支持在线检索并显示组件的日志内容,用于问题定位等其他日志查看场景,管理员可在线按照节点范围或者组件角色范围快速检视所有日志,通过关键字分析快速定位问题。 本章节操作仅支持MRS 3.x及之后的版本。 在线检索日志 登录FusionInsight
集群在线扩缩容 大数据集群的处理能力通常可以通过增加集群的节点数来横向扩展,当集群规模不符合业务要求时,用户可以通过该功能进行集群节点规模的调整,进行扩容或者缩容;在缩容节点时,MRS会智能地选择负载最少或者迁移数据量最小节点,并且在缩容过程中,缩容节点不再接收新的任务,正在执行
Hive应用开发建议 HQL编写之隐式类型转换 查询语句使用字段的值做过滤时,不建议通过Hive自身的隐式类型转换来编写HQL。因为隐式类型转换不利于代码的阅读和移植。 建议示例: select * from default.tbl_src where id = 10001; select
默认的输入字段分隔符,需要配置输入与输出转换步骤才生效,转换步骤的内容可以为空;如果作业的转换步骤中没有配置分隔符,则以此处的默认分隔符为准。 , - loader.input.line.separator 默认的输入行分隔符,需要配置输入与输出转换步骤才生效,转换步骤的内容可以为空;如果作业的转换步骤中没有配置分隔符,则以此处的默认分隔符为准。
默认的输入字段分割符,需要配置输入与输出转换步骤才生效,转换步骤的内容可以为空;如果作业的转换步骤中没有配置分割符,则以此处的默认分割符为准。 , - loader.input.line.separator 默认的输入行分割符,需要配置输入与输出转换步骤才生效,转换步骤的内容可以为空;如果作业的转换步骤中没有配置分割符,则以此处的默认分割符为准。
存中,在多次计算间重用。 RDD的生成: 从HDFS输入创建,或从与Hadoop兼容的其他存储系统中输入创建。 从父RDD转换得到新RDD。 从数据集合转换而来,通过编码实现。 RDD的存储: 用户可以选择不同的存储级别缓存RDD以便重用(RDD有11种存储级别)。 当前RDD默
VIEW qualifiedName SET STATUS <status> 描述 修改物化视图的状态,仅支持ENABLE和SUSPEND相互转换,以及将DISABLE状态修改为SUSPEND或ENABLE。物化视图所有状态包含如下: INIT: 物化视图第一次创建时的状态 SUSP
hive.manageFilesourcePartitions=false后,查不到数据(但是实际在Hive查询中是有数据的)。 原因分析 转换格式失败,spark-sql使用其内置的Metastore,而不是Hive中使用的Metastore,所以读取元数据时失败,spark-s
出现这种情况是因为HiveSyncTool目前只支持很少的兼容数据类型转换。进行任何其他不兼容的更改都会引发此异常。 请检查相关字段的数据类型演进,并验证它是否确实可以被视为根据Hudi代码库的有效数据类型转换。 父主题: Hive同步
出现这种情况是因为HiveSyncTool目前只支持很少的兼容数据类型转换。进行任何其他不兼容的更改都会引发此异常。 请检查相关字段的数据类型演进,并验证它是否确实可以被视为根据Hudi代码库的有效数据类型转换。 父主题: Hudi常见问题
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。
BulkLoad同步数据类型数据到HBase表中时,存在以下限制: 数据类型转换的对应关系请参见表1。日期类型会被先转换为String类型,再存储到HBase中; 数字类型、字符串类型、布尔类型均会直接转为byte数组存储到HBase中,解析数据时,请将byte数组直接转换为对应类型,同时需要注意判断空值。 不建议
Impala开发建议 Impala SQL编写之不支持隐式类型转换 查询语句使用字段的值做过滤时,不支持使用Hive类似的隐式类型转换来编写Impala SQL: Impala示例: select * from default.tbl_src where id = 10001; select
Impala开发建议 Impala SQL编写之不支持隐式类型转换 查询语句使用字段的值做过滤时,不支持使用Hive类似的隐式类型转换来编写Impala SQL: Impala示例: select * from default.tbl_src where id = 10001; select
能匹配到物化视图的查询或者子查询转换为物化视图,避免了数据的重复计算,这种情况下往往能较大地提高查询的响应效率。 物化视图通常基于对数据表进行聚合和连接的查询结果创建。 物化视图支持“查询重写”,这是一种优化技术,即将基于原始表编写的查询语句转换为查询一个或多个物化视图语句的等效请求。如下物化视图的SQL示例:
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。
0版本开始提供了一套API可以将使用Storm API编写的业务平滑迁移到Flink平台上,只需要极少的改动即可完成。通过这项转换可以覆盖大部分的业务场景。 Flink支持两种方式的业务迁移: 完整迁移Storm业务:转换并运行完整的由Storm API开发的Storm拓扑。 嵌入式迁移Storm业务:在Flin
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。