检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts在线服务的API接口组成规则是什么? 模型部署成在线服务后,用户可以获取API接口用于访问推理。 API接口组成规则如下: https://域名/版本/infer/服务ID 示例如下: https://6ac81cdfac4f4a30be95xxxbb682.apig
针对机器学习类模型,仅支持“application/json” data 在线服务-非必选 批量服务-必选 String 请求体以json schema描述。参数说明请参考官方指导。 表5 response结构说明 参数 是否必选 参数类型 描述 Content-type 在线服务-非必选 批量服务-必选 String
面提示调用接口访问在线服务。 目前只支持jpg、jpeg、bmp、png格式的图片。 图2 预测结果 表1 预测结果中的参数说明 参数 说明 predicted_label 表示图片预测的标签。 scores 表示Top5标签的预测置信度。 由于“运行中”的在线服务将持续耗费资源
运行完成的工作流会自动部署为相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”直接跳转进入在线服务详情页,或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,选择“预测”页签。
行过程。 数据集准备。 订阅工作流。 运行工作流。 准备数据集 前往AI Gallery,在“资产集市>数据>数据集”页面下载常见生活垃圾图片。 单击“下载”,选择云服务区域,推荐选择“华北-北京四”,单击“确定”。 进入“下载详情”页面,填写下述参数。 下载方式:选择“ModelArts数据集”。
"[{\"label\":\"batch_size\",\"value\":\"4\",\"placeholder_cn\":\"每次更新训练的图片数量(总)\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"lr\",\"value\":\"0
选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出结果。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 目
运行完成的工作流会自动部署相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,单击选择“预测”页签。 图4 上传预测图片 单击“上传
运行完成的工作流会自动部署相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,单击选择“预测”页签。 图4 上传预测图片 单击“上传
Resize 调整图片大小。 height:变换后的图片高度。默认值224 width:变换后的图片宽度。默认值224 do_validation:数据扩增前是否进行数据校验。默认值为True。 Rotate 旋转,将图像围绕中心点旋转的操作,操作完成之后保持图片原本的形状不变,不足的部分用黑色填充。
}, { "from": "assistant", "value": "第一张图片是重庆的城市天际线,第二张图片是北京的天际线。" } ] } ] 为针对多样的VL任务,特殊tokens如下: <img> </img>
}, { "from": "assistant", "value": "第一张图片是重庆的城市天际线,第二张图片是北京的天际线。" } ] } ] 为针对多样的VL任务,特殊tokens如下: <img> </img>
查看特征分析结果 在特征分析结果中,例如图片亮度指标,数据分布中,分布不均匀,缺少某一种亮度的图片,而此指标对模型训练非常关键。此时可选择增加对应亮度的图片,让数据更均衡,为后续模型构建做准备。 数据标注 人工标注 在“未标注”页签图片列表中,单击图片,自动跳转到标注页面。 在标注页面
ModelArts团队标注的数据分配机制是什么? 目前不支持用户自定义成员任务分配,数据是平均分配的。 当数量和团队成员人数不成比例,无法平均分配时,则将多余的几张图片,随机分配给团队成员。 如果样本数少于待分配成员时,部分成员会存在未分配到样本的情况。样本只会分配给labeler,比如10000张都是未
的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。 ModelArts自动学习,为入门级用户提供AI零代码解决方案 支持图片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程 根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型
sh命令后,会自动生成face_detection/detection/sfd目录。 Step6 服务调用 提前准备人物图片,支持'jpg', 'png', 'jpeg'格式。推荐测试图片大小1280*720或1920*1080。 提前准备音频文件audio,支持'wav', 'mp3', 'mp4'格式。
用于智能标注的数据集必须存在至少2种标签,且每种标签已标注的图片不少于5张。 用于智能标注的数据集必须存在未标注图片。 检查用于标注的图片数据,确保您的图片数据中,不存在RGBA四通道图片。如果存在四通道图片,智能标注任务将运行失败,因此,请从数据集中删除四通道图片后,再启动智能标注。 启动智能标注前要
图像分类 图像分类项目,是对图像进行分类。需要添加图片并对图像进行分类标注,完成图片标注后开始模型训练,即可快速生成图像分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“不合格”,通过训练部署模型,实现产品的质检。
sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。启动命令如下: sh run.sh 图6 运行启动脚本 上传一张预测图片(手写数字图片)到Notebook中。 图7 手写数字图片 图8 上传预测图片 重新打开一个新的Terminal终端,执行如下命令进行预测。 curl -kv -F 'image
训练物体检测模型 自动学习物体检测项目,在图片标注完成后,通过模型训练得到合适的模型版本。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览页面,单击“数据标注”节点的“实例详情”进入数据标注页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的