检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--image-input-shape:输入图片维度,当前不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下:
期为“按账期”,您也可以设置其他统计维度和周期,详细介绍请参见流水与明细账单。 查看在线服务的账单 ModelArts在线服务查询资源账单首先需要获取资源名称,而ModelArts控制台展示的在线服务名称与账单中上报的资源名称不一致,您需要先了解资源名称的查询方法,以及资源名称与
止或删除的时间为准。 实例具体如下: 因运行自动学习作业,而创建的对应的训练作业和在线服务。 因运行Workflow工作流,而创建的对应的训练作业和在线服务。 Notebook实例 训练作业 在线服务 例如,您在8:45:30购买了一个按需计费的专属资源池,相关资源为计算资源(v
服务预测 服务预测失败 服务预测失败,报错APIG.XXXX 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout
导出数据为新数据集 登录ModelArts管理控制台,在左侧菜单栏中选择“资产管理>数据集”,进入“数据集”管理页面。 在数据集列表中,选择“图片”类型的数据集,单击数据集名称进入“数据集概览页”。 在“数据集概览页”,单击右上角“导出 ”。在弹出的“导出”对话框中,填写相关信息,然后单击“确定”,开始执行导出操作。
在ModelArts中使用自定义镜像创建在线服务,如何修改端口? ModelArts平台是否支持多模型导入? 在ModelArts中导入模型对于镜像大小有什么限制? ModelArts在线服务和批量服务有什么区别? ModelArts在线服务和边缘服务有什么区别? 在ModelA
ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 AI全流程开发 数据管理 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。 开发环境 Noteb
ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 AI全流程开发 数据管理 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。 开发环境 Noteb
配置CES云监控和SMN消息通知使用权限。ModelArts推理部署的在线服务详情页面内有调用次数详情,单击可查看该在线服务的调用次数随时间详细分布的情况。如果想进一步通过CES云监控查看ModelArts的在线服务和对应模型负载运行状态的整体情况,需要给子账号授予CES权限。 如果只是查看监控,给子账号授予CES
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在“在线服务”列表中,停止因运行自动学习作业而创建的服务。操作完成后,ModelArts服务即停止计费。 登录OBS控制台,进入自己创建的OBS桶
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
8B参数。MiniCPM-V2.0具有领先的光学字符识别(OCR)和多模态理解能力。该模型在综合性OCR能力评测基准OCRBench上达到开源社区的最佳水平,甚至在场景文字理解方面实现接近 Gemini Pro 的性能。 MiniCPM-V2.0值得关注的特性包括: 领先的 OCR 和多模态理解能力。MiniCPM-V2
见将AI Gallery中的模型部署为AI应用。 发布后的资产,可通过微调大师训练模型和在线推理服务部署模型,具体可参见使用AI Gallery微调大师训练模型、使用AI Gallery在线推理服务部署模型。 图1 AI Gallery使用流程 AI Gallery也支持管理从M
将模型部署为实时推理作业 实时推理的部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测
placeholder_type=wf.PlaceholderType.INT, default=64, description="每步训练的图片数量(单卡)")), wf.AlgorithmParameters(name="eval_batch_size",
zip软件包中。 模型每次推理的图片数量必须是支持的batchsize,比如当前转换的mindir模型batchsize仅支持1,那么模型推理输入的图片数只能是1张;如果当前转换的mindir模型的batchsize支持多个,比如1,2,4,8,那么模型推理输入的图片数可以是1,2,4,8。
支持3条。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 确认信息填写无误,单击“立即创建”,完成模型的创建。 在模型列表中,您可以查
${docker_ip} --served-port ${port} --text 图片内容是什么 表2 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json, 可参考表2
Standard训练作业:用户在运行训练作业时,可以查看训练作业占用的CPU、GPU或NPU资源使用情况。具体请参见训练资源监控章节。 Standard在线服务:用户将模型部署为在线服务后,可以通过监控功能查看该推理服务的CPU、内存或GPU等资源使用统计信息和模型调用次数统计,具体参见查看推理服务详情章节。