检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
更新管理 ModelArts在线服务更新 对于已部署的推理服务,ModelArts支持通过更换AI应用的版本号,实现服务升级。 推理服务有三种升级模式:全量升级、滚动升级(扩实例)和滚动升级(缩实例)。了解三种升级模式的流程,请参见图1。 全量升级 需要额外的双倍的资源,先全量创建新版本实例,然后再下线旧版本实例。
too large. 图片大小超限 请上传小于7M的图片。 400 ModelArts.5062 The number of the images uploaded today has reached the limit. 当日上传图片数量超限 请次日再上传图片。 400 ModelArts
t-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav的识别结果如下: 图2 测试音频识别结果 步骤九:在Aishell1测试集上测试 python infer.py --model_path 模型文件所在的绝对路径
AI框架版本升级,使用了新版本算子。 例如:每半年对模型进行一次变更,变更的内容包含模型结构,并升级AI框架。 - 尺寸要求 超分前产生的图片尺寸要求: 512*512 720*720 1080 *1080 1920*1920 (shape过大可能导致性能下降) - 父主题: GPU推理业务迁移至昇腾的通用指导
规则。 综上,在线服务的运行费用 = 计算资源费用(3.50 元) + 存储费用 示例:使用专属资源池。计费项:存储费用 假设用户于2023年4月1日10:00:00创建了一个使用专属资源池的在线服务,并在11:00:00停止运行。按照存储费用结算,那么运行这个在线服务的费用计算过程如下:
<镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606。 ${base_image}为基础镜像地址。 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
--url:API接口公网地址与"/v1/completions"拼接而成,部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingF
“代码目录” 训练作业代码目录所在的OBS路径。 您可以单击代码目录后的“编辑代码”,在“OBS在线编辑”对话框中实时编辑训练脚本代码。当训练作业状态为“等待中”、“创建中”和“运行中”时,不支持“OBS在线编辑”功能。 说明: 当您使用订阅算法创建训练作业时,不支持该参数。 “启动文件” 训练作业启动文件位置。
表5 Monitor 参数 参数类型 描述 failed_times Integer 模型实例调用失败次数,在线服务字段。 model_version String 模型版本,在线服务字段。 cpu_memory_total Integer 总内存,单位MB。 gpu_usage Float
标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。 “训练规格”
迁移环境准备 迁移环境准备有以下两种方式: 表1 方式说明 序号 名称 说明 方式一 ModelArts Notebook 该环境为在线调试环境,主要面向演示、体验和快速原型调试场景。 优点:可快速、低成本地搭建环境,使用标准化容器镜像,官方Notebook示例可直接运行。 缺点
专属资源池购买后,中途扩容了一个节点,如何计费? 共享池和专属池的区别是什么? 如何通过ssh登录专属资源池节点? 训练任务的排队逻辑是什么? 专属资源池下的在线服务停止后,启动新的在线服务,提示资源不足 不同实例的资源池安装的cuda和驱动版本号分别是什么? 算法运行时需要依赖鉴权服务,公共资源池是否支持两者打通网络?
AI框架版本升级,使用了新版本算子。 例如:每半年对模型进行一次变更,变更的内容包含模型结构,并升级AI框架。 - 尺寸要求 超分前产生的图片尺寸要求: 512*512 720*720 1080 *1080 1920*1920 (shape过大可能导致性能下降) - 父主题: GPU推理业务迁移至昇腾的通用指导
删除Workflow工作流 查询Workflow工作流 修改Workflow工作流 总览Workflow工作流 查询Workflow待办事项 在线服务鉴权 创建在线服务包 获取Execution列表 新建Workflow Execution 删除Workflow Execution 查询Workflow
服务当前运行所用配置的更新时间,距“1970.1.1 0:0:0 UTC”的毫秒数。 debug_url String 在线服务在线调试地址,只有当模型支持在线调试且只有一个实例的时候会存在。 due_time Number 在线服务自动停止时间,距“1970.1.1 0:0:0 UTC”的毫秒数,未配置自动停止则不返回。
增加3条。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 “启动命令” 指定模型的启动命令,您可以自定义该命令。 说明: 包含字符$,|,>,<,`,
<镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606。 ${base_image}为基础镜像地址。 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
向信息,通过工具构造相应的API单元测试,将NPU输出与标杆比对,从而检测出精度有差异的API。更多介绍请参考Msprobe工具离线预检和在线预检介绍。 父主题: PyTorch迁移精度调优
准备数据集 进入AI Gallery,搜索8类常见生活垃圾图片数据集。 单击“下载”,选择云服务区域“华北-北京四”,单击“确定”进入下载详情页。 填写如下参数: 下载方式:ModelArts数据集。 目标区域:华北-北京四。 数据类型:图片。 数据集输出位置:用来存放输出的数据标注的相关
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。