检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
托权限。 图3 委托用户切换角色 说明: ModelArts暂不支持创建身份策略权限的委托。 “委托选择” 已有委托:列表中如果已有委托选项,则直接选择一个可用的委托为上述选择的用户授权。单击委托名称查看该委托的权限详情。 新增委托:如果没有委托可选,可以在新增委托中创建委托权限
${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/h
${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/h
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train
'/usr/tmp', 'home/ma-user/work/SR/RDN_train_base'] 图1 运行代码报错 原因分析 根据报错提示,需要排查是否将大量数据被保存在“/tmp”中。 处理方法 进入到“Terminal”界面。在“/tmp”目录下,执行命令du -sh *,查看该目录下的空间占用情况。
name String 子图名称。 steps Array of strings 子图step成员。 表17 DataRequirement 参数 参数类型 描述 name String 训练数据的名称。填写1-64位,仅包含英文、数字、下划线(_)和中划线(-),并且以英文开头的名称。
来,用以分析问题,例如检测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。 将两份梯度数据进行相似度对比。在有标杆问题中,可以确认训练过程中精度问题出现的Step,以及抓取反向过程中的问题。 使用步骤如下: 通过pip安装msprobe工具。 # shell
_exit_barrier(self)方法中的barrier_timeout参数,修改后如图1所示。 #修改前 barrier_timeout=self._exit_barrier_timeout #修改后 barrier_timeout=3000 图1 修改后的barrier_timeout参数
据缺失。 当文件状态变成“上传成功”表示数据文件成功上传至AI Gallery仓库进行托管。单击“完成”返回镜像文件页面。 图1 上传成功 文件上传过程中请耐心等待,不要关闭当前上传页面,关闭页面会中断上传进程。 父主题: 发布和管理AI Gallery镜像
据集;使用自定义数据集时,请更新代码目录下data/dataset_info.json文件;请务必在dataset_info.json文件中添加数据集描述;具体示例如下。 上传自定义数据到指定目录 将下载的原始数据存放在{work_dir}/llm_train/LLaMAFact
据集;使用自定义数据集时,请更新代码目录下data/dataset_info.json文件;请务必在dataset_info.json文件中添加数据集描述;具体示例如下。 上传自定义数据到指定目录 将下载的原始数据存放在{work_dir}/llm_train/LLaMAFact
在Swin-Transformer目录下,创建运行脚本run.sh。 脚本中的"SRC_DATA_PATH=${imagenet数据集在obs中分享链接}",需要替换为上一步中的imagenet21k_whole文件夹分享链接。 脚本中的"https://${bucket_name}.obs.cn-north-4
_exit_barrier(self)方法中的barrier_timeout参数,修改后如图1所示。 #修改前 barrier_timeout=self._exit_barrier_timeout #修改后 barrier_timeout=3000 图1 修改后的barrier_timeout参数
_exit_barrier(self)方法中的barrier_timeout参数,修改后如图1所示。 #修改前 barrier_timeout=self._exit_barrier_timeout #修改后 barrier_timeout=3000 图1 修改后的barrier_timeout参数
save_pretrained("CodeLlama-34b-hf") 步骤二:启动量化服务 使用量化模型需要在NPU的机器上运行。 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
据集;使用自定义数据集时,请更新代码目录下data/dataset_info.json文件;请务必在dataset_info.json文件中添加数据集描述;具体示例如下。 上传自定义数据到指定目录 将下载的原始数据存放在{work_dir}/llm_train/LLaMAFact
${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/h
表2 Query参数 参数 是否必选 参数类型 描述 label_type 否 Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容
${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/h
_exit_barrier(self)方法中的barrier_timeout参数,修改后如图1所示。 #修改前 barrier_timeout=self._exit_barrier_timeout #修改后 barrier_timeout=3000 图1 修改后的barrier_timeout参数