检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Manager:云专线用于搭建用户本地数据中心与线上云VPC之间高速、低时延、稳定安全的专属连接通道,充分利用线上云服务优势的同时,继续使用现有的IT设施,实现灵活一体,可伸缩的混合计算环境。 操作前请确保云专线服务可用,并已打通本地数据中心到线上VPC的连接通道。云专线详情请参考什么是云专线。
针对传统存算一体大数据架构中扩容困难、资源利用率低等问题,MRS采用计算存储分离架构,存储基于公有云对象存储实现11个9的高可靠,无限容量,支撑企业数据量持续增长;计算资源支持0~N弹性扩缩,百节点快速发放。存算分离后,计算节点可实现真正的极致弹性伸缩;数据存储部分基于OBS的跨AZ等
应用场景 大数据在人们的生活中无处不在,在IoT、电子商务、金融、制造、医疗、能源和政府部门等行业均可以使用华为云MRS服务进行大数据处理。 海量数据分析场景 海量数据分析是现代大数据系统中的主要场景。通常企业会包含多种数据源,接入后需要对数据进行ETL(Extract-Tran
使用Hive加载OBS数据并分析企业雇员信息 应用场景 MRS Hadoop分析集群,提供Hive、Spark离线大规模分布式数据存储和计算,进行海量数据分析与查询。 本实践基于华为云MapReduce服务,用于指导您创建MRS集群后,使用Hive对OBS中存储的原始数据进行导入、分析等操作,展示了
MRS集群内使用主流的大数据Hadoop,目前支持Hadoop 3.x版本,并且随集群演进更新版本。 同时MRS也支持用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算分离模式。 更多信息MRS各版本支持的组件情况请参见MRS组件版本一览表。 父主题: 产品咨询类
当您为IES购买MRS时,请选择可用区为“边缘可用区”。 可用区1 虚拟私有云 MRS集群节点所归属的虚拟私有云网络(VPC),如果没有可用的虚拟私有云,请单击“查看虚拟私有云”进入网络控制台,创建一个新的虚拟私有云。 - 子网 虚拟私有云(VPC)网络内的子网信息,如果没有可用的子网,请单击“查
Ranger权限,可参考添加HetuEngine的Ranger访问权限策略。 创建HetuEngine计算实例。 创建计算实例并确保运行正常,可参考创建HetuEngine计算实例。 步骤二:获取JDBC jar包 登录FusionInsight Manager。 选择“集群 >
Hudi Hudi是一种数据湖的存储格式,在Hadoop文件系统之上提供了更新数据和删除数据的能力以及消费变化数据的能力。支持多种计算引擎,提供IUD接口,在HDFS的数据集上提供了插入更新和增量拉取的功能。 如需使用Hudi,请确保MRS集群内已安装Spark/Spark2x服务。
景的开发思路: 接收Kafka中数据,生成相应DStream。 对单词记录进行分类统计。 计算结果,并进行打印。 方案架构 Spark Streaming是一种构建在Spark上的实时计算框架,扩展了Spark处理大规模流式数据的能力。当前Spark支持两种数据处理方式:Direct
要注意以下约束限制: MRS集群和LakeFormation实例必须同在一个云账户下且属于同一个Region。 LakeFormation侧创建的接入客户端所在虚拟私有云,必须与MRS集群在同一虚拟私有云下。 MRS集群仅支持对接LakeFormation实例中名称为hive的Catalog。
简介 Spark是基于内存的分布式计算框架。在迭代计算的场景下,数据处理过程中的数据可以存储在内存中,提供了比MapReduce高10到100倍的计算能力。Spark可以使用HDFS作为底层存储,使用户能够快速地从MapReduce切换到Spark计算平台上去。Spark提供一站式数
作为存储引擎,通常情况下Kudu会和计算引擎一起协同工作: 首先在计算引擎上(比如Impala)用SQL语句创建表对象; 然后通过Kudu的驱动往这个表里写数据; 在计算引擎上直接查询这个表里的数据。 在本开发程序示例中,为了不引入额外的计算引擎,将以Kudu为主,全部通过Java
Spark是分布式批处理框架,提供分析挖掘与迭代式内存计算能力,支持多种语言(Scala/Java/Python)的应用开发。 适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative Computation):支持迭代计算,有效应对多步的数据处理逻辑。
Spark是分布式批处理框架,提供分析挖掘与迭代式内存计算能力,支持多种语言的应用开发。 通常适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative Computation):支持迭代计算,有效应对多步的数据处理逻辑。 数据挖掘(Data
ctions操作的时候才会真正启动计算过程进行计算。Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。 图2 RDD操作示例 RDD看起来与Scala集合类型没有太大差别,但数据和运行模型大相迥异。 val file = sc
ctions操作的时候才会真正启动计算过程进行计算。Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。 图2 RDD操作示例 RDD看起来与Scala集合类型没有太大差别,但数据和运行模型大相迥异。 val file = sc
的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。 Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高 保证无数据丢失
开发思路 作为存储引擎,通常情况下会和计算引擎一起协同工作: 首先在计算引擎上(比如Impala)用SQL语句创建表对象; 然后通过Kudu的驱动往这个表里写数据; 于此同时可以在计算引擎上直接查询这个表里的数据。 在本开发程序示例中,为了不引入额外的计算引擎,将以Kudu为主,全部通过Java
opts参数;如果未设置-Xmx,Xmx值从mapreduce.map.memory.mb*mapreduce.job.heap.memory-mb.ratio计算获取。 集群已开启Kerberos认证:-Djava.net.preferIPv4Stack=true -Djava.net.preferIPv6Addresses=false
ctions操作的时候才会真正启动计算过程进行计算。Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。 图2 RDD操作示例 RDD看起来与Scala集合类型没有太大差别,但数据和运行模型大相迥异。 val file = sc