内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 分享图机器学习研究趋势——不断更新应用

    nsorFlow计算图开销。先通过标准GNN对图形进行处理,然后产生与图中每个节点调度优先级相对应离散化嵌入,最后将嵌入被馈送到遗传算法BRKGA中进行模型训练,从而优化得到TensorFlow图实际计算开销。值得注意是该遗传算法决定每个节点布局和调度。类似的炫酷应用还有Chence

    作者: 初学者7000
    1067
    3
  • 深度学习深度模型中优化

    深度学习算法在许多情况下都涉及到优化。例如,模型中进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到诸多优化问题中,最难是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见。因为这其中优化

    作者: 小强鼓掌
    338
    1
  • 深度学习现实应用

    Transformers)模型,采用迁移学习和微调方法,进一步刷新了深度学习方法在自然语言处理任务上技术前沿。到目前为止,面向自然语言处理任务深度学习架构仍在不断进化,与强化学习、无监督学习结合应该会带来效果更优模型。1.3.4 其他领域深度学习在其他领域(如生物学、医疗和金融

    作者: 角动量
    2054
    4
  • 分享深度学习未来发展学习范式-——简化学习

    谷歌翻译公司需要创建一个可以离线访问高性能翻译服务。本质上,简化学习集中在以部署为中心设计上。这就是为什么大多数简化学习研究来自公司研究部门。以部署为中心设计一个方面不是盲目地遵循数据集性能指标,而是在部署模型时关注潜在问题。    例如,前面提到对抗输入是设计用来欺骗网络恶意输入。在

    作者: 初学者7000
    1133
    1
  • 深度学习概念

    Intelligence)。深度学习学习样本数据内在规律和表示层次,这些学习过程中获得信息对诸如文字、图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语言和图像识别方面取得效果,远远超过先前

    作者: QGS
    973
    3
  • 机器学习深度学习区别是什么?

    深度学习是机器学习算法子类,其特殊性是有更高复杂度。因此,深度学习属于机器学习,但它们绝对不是相反概念。我们将浅层学习称为不是深层那些机器学习技术。让我们开始将它们放到我们世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中多个隐藏层组成。我们在《从神经元到

    作者: @Wu
    1169
    3
  • 基于机器学习油藏产能预测模型研究

    基于机器学习油藏产能预测模型研究 在油田勘探和开发过程中,准确预测油藏产能对于制定合理开采策略至关重要。传统产能预测方法通常基于经验公式和统计模型,但随着人工智能和机器学习技术发展,基于机器学习油藏产能预测模型正逐渐成为研究热点。本文将探讨如何利用机器学习方法构建油

    作者: 皮牙子抓饭
    发表时间: 2023-06-30 19:15:50
    7
    0
  • 深度学习之基于梯度学习

    我们到目前为止看到线性模型和神经网络最大区别,在于神经网络非线性导致大多数我们感兴趣损失函数都成为了非凸。这意味着神经网络训练通常使用迭代、基于梯度优化,仅仅使得代价函数达到一个非常小值;而不是像用于训练线性回归模型线性方程求解器,或者用于训练逻辑回归或SVM凸优化算

    作者: 小强鼓掌
    833
    2
  • 分享深度学习发展混合学习

      这种学习范式试图跨越监督学习和非监督学习之间界限。由于缺少标签数据和收集标签数据集高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    931
    1
  • 深度学习前景

    为众所周知深度学习’’。这个领域已经更换了很多名称,它反映了不同研究人员和不同观点影响。全面地讲述深度学习历史超出了本书范围。然而,一些基本背景对理解深度学习是有用。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习雏形出现在控

    作者: G-washington
    1665
    1
  • 分享深度学习发展学习范式——混合学习

    为生成图像,而且输出样本类别(多输出学习)。这是基于这样一个想法,通过判别器学习区分真实和生成图像, 能够在没有标签情况下学得具体结构。通过从少量标记数据中进行额外增强,半监督模型可以在最少监督数据量下获得最佳性能。    GAN也涉及了其他混合学习领域——自监督学习,

    作者: 初学者7000
    741
    1
  • 分享深度学习发展学习范式——混合学习

    为生成图像,而且输出样本类别(多输出学习)。这是基于这样一个想法,通过判别器学习区分真实和生成图像, 能够在没有标签情况下学得具体结构。通过从少量标记数据中进行额外增强,半监督模型可以在最少监督数据量下获得最佳性能。    GAN也涉及了其他混合学习领域——自监督学习,

    作者: 初学者7000
    830
    3
  • 深度学习之机器学习算法效果

    合。通俗地,模型容量是指其拟合各种函数能力。容量低模型可能很难拟合训练集。容量高模型可能会过拟合,因为记住了不适用于测试集训练集性质。        一种控制训练算法容量方法是选择假设空间(hypothesis space),即能够选为解决方案学习算法函数集。例如,

    作者: 小强鼓掌
    726
    3
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    821
    3
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    516
    2
  • 机器学习真实案例研究:基于文本描述交易聚类

    本文为大家介绍了在日常电子交易中对用户交易信息进行聚类分析和建模,提供了用户分析思路和建议。原文链接

    作者: AI资讯
    10150
    36
  • 深度学习是机器学习一种

    深度学习是机器学习一种,而机器学习是实现人工智能必经路径。深度学习概念源于人工神经网络研究,含多个隐藏层多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象高层表示属性类别或特征,以发现数据分布式特征表示。研究深度学习动机在于建立模拟人脑进行分析学

    作者: QGS
    531
    1
  • 人工智能、机器学习深度学习关系

    数据一种机器学习技术。它基本特点,是试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习“神经网络”是强相关,“神经网络”也是其主要算法和手段;或者我们可以将“深度学习”称之为“改良版神经网

    作者: 我的老天鹅
    1925
    23
  • 浅谈深度学习

    学习方法——深度前馈网络、卷积神经网络、循环神经网络等;无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习思想:深度神经网络基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层高层次特征来表示数据抽象语义信息,获得更好特征鲁棒性。深度学习应用

    作者: QGS
    39
    2
  • 机器学习深度学习

    Learning,DL)属于机器学习子类。它灵感来源于人类大脑工作方式,是利用深度神经网络来解决特征表达一种学习过程。深度神经网络本身并非是一个全新概念,可理解为包含多个隐含层神经网络结构。为了提高深层神经网络训练效果,人们对神经元连接方法以及激活函数等方面做出了

    作者: QGS
    678
    2