检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在深度学习的背景下,半监督学习通常指的是学习一个表示 h = f(x)。学习表示的目的是使相同类中的样本有类似的表示。无监督学习可以为如何在表示空间聚集样本提供有用线索。在输入空间紧密聚集的样本应该被映射到类似的表示。在许多情况下,新空间上的线性分类器可以达到较好的泛化 (Belkin
摘要:针对当前现有的密文技术存在的不足进行改进,本文提出一种新的安全密文模糊检索算法,该算法的原理是依据关键词在文档的出现的频率进行关键词语义词库的构建。在进行检索的时候,云服务商可以对用户提交的检索关键词利用算法进行扩展,由扩展得到的关键词进行检索,然后对所检索文档进行相关度的排序,返回结果(用户可以指定结果的数量限制
更确切的说,他们说明分段线性网络(可以通过整流非线性或 maxout 单元获得)可以表示区域的数量是网络深度的指数级的函数。图 6.5 解释了带有绝对值整流的网络是如何创建函数的镜像图像的,这些函数在某些隐藏单元的顶部计算,作用于隐藏单元的输入。每个隐藏单元指定在哪里折叠输入空
1998)。它是一种非参数的最近邻算法,其中使用的度量不是通用的欧几里德距离,而是根据邻近流形关于聚集概率的知识导出的。这个算法假设我们尝试分类的样本和同一流形上的样本具有相同的类别。由于分类器应该对局部因素(对应于流形上的移动)的变化保持不变,一种合理的度量是将点 x1 和 x2
No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解
练有监督的深度神经网络,但最初的尝试大都失败。赛普·霍克赖特在其博士论文中将失败的原因归结为梯度消失,这一现象同时在深度前馈神经网络和循环神经网络中出现,后者的训练过程类似深度网络。在分层训练的过程中,本应用于修正模型参数的误差随着层数的增加指数递减,这导致了模型训练的效率低下。
隐藏单元的设计是一个非常活跃的研究领域,并且还没有许多明确的指导性理论原则。整流线性单元是隐藏单元极好的默认选择。许多其他类型的隐藏单元也是可用的。决定何时使用哪种类型的隐藏单元是困难的事(尽管整流线性单元通常是一个可接受的选择)。我们这里描述对于每种隐藏单元的一些基本直觉。这些
物联网设备为中心的入侵检测难以感知物联网中的潜在复杂威胁。近年来,物联网设备在边缘节点(如网关等)的协助下可实现高度的互联互通。因此,以协作为中心的入侵检测成为了研究者们的研究热点。例如,在Albers等[5]的研究中,多个物联网设备可构成社区,且各物联网节点中的本地入侵检测系统可通过交换简单网络管理协议(SNMP
序列预测「NGS测序深度」的深度学习模型一种可以根据 DNA 序列预测「NGS测序深度」的深度学习模型 莱斯大学的研究人员设计了一个深度学习模型,该模型可以根据DNA序列,预测Next-Generation Sequencing(NGS)的测序深度。 针对预测测序深度的有针对性的NGS面板工作流程和深度学习模型(DLM)的概述
第一个观点是基于评估架构所需执行的顺序指令的数目。假设我们将模型表示为给定输入后,计算对应输出的流程图,则可以将这张流程图中的最长路径视为模型的深度。正如两个使用不同语言编写的等价程序将具有不同的长度;相同的函数可以被绘制为具有不同深度的流程图,其深度取决于我们可以用来作为一个步骤的函数。图1.3
1999)。核机器的一个主要缺点是计算决策函数的成本关于训练样本的数目是线性的。因为第 i 个样本贡献 αik(x, x(i)) 到决策函数。支持向量机能够通过学习主要包含零的向量 α,以缓和这个缺点。那么判断新样本的类别仅需要计算非零 αi 对应的训练样本的核函数。这些训练样本被称为支持向量
20227/31/1659239540190972017.png) 这个切线的斜率看上去不是0.35的样子啊,明显要更陡一下。这是因为x轴和y轴的比例不一致而导致的视觉效果,如果轴的比例之后显示是这样的,这样看上去就对了 ![image.png](https://bbs-img.huaweicloud
说,各种深度学习框架已经提供了我们所需的各种颜料。我们要做的,就是利用不同的颜料,在空白的纸上,一笔一划画出我们所需的网络。 深度学习改变了传统互联网业务。第一次听到这个名词时可能大家都会对这方面的知识感到一头雾水,到底什么是深度学习?实际上,深度学习已经应用到生活中的点点滴滴
长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。
在语音分类方面最近想要在小数据集上进行一些改进,看论文的时候看到了类间学习(between-class learning),感觉是一个解决小数据集的有效方法,但是搜索对应的文献的时候发现研究使用的并不多,想问一下各位有了解这个数据混合策略的么,为什么使用的并不多?
些端云联合学习方法和框架被提出来,旨在联合多个端侧设备共同训练一个全局模型,并实现端侧隐私保护。Google率先于2016年提出了联邦学习方法和框架。杨强等又提出了横向联邦学习、纵向联邦学习、联邦迁移学习以及联邦强化学习等方法及对应的框架。端侧推理、迁移学习和联邦学习属于端云协同
关于聚类的一个问题是聚类问题本身是病态的。这是说没有单一的标准去度量聚类的数据对应真实世界有多好。我们可以度量聚类的性质,例如每个聚类的元素到该类中心点的平均欧几里得距离。这使我们可以判断能够多好地从聚类分配中重建训练数据。然而我们不知道聚类的性质多好地对应于真实世界的性质。此外
深度学习服务是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练。
以下个人做的笔记,来源于DataCastle数据城堡作者DC君的竞赛经验。性能提升的力度按下方技术方案的顺序从上到下依次递减:1. 从数据上提升性能 a. 收集更多的数据 b. 产生更多的数据 c. 对数据做缩放 d. 对数据做变换 e. 特征选择 f. 重新定义问题2. 从算法上提升性能
想要得到的。因此,我们说输入层和中间层被紧密的连接起来了。值得注意的是神经网络给予了足够多的关于z和y的数据,给予了足够的训练样本有关c和y。神经网络非常擅长计算从c到g的精准映射函数。 这就是一个基础的神经网络。你可能发现你自己的神经网络在监督学习的环境下是如此的有效和强