内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习笔记之表示学习

    测照片中车。我们知道,汽车有轮子,所以我们可能会想用车轮存在与否作为特征。不幸是,我们难以准确地根据像素值来描述车轮看上去像什么。虽然车轮具有简单几何形状,但它图像可能会因场景而异,如落在车轮上阴影、太阳照亮车轮金属零件、汽车挡泥板或者遮挡车轮一部分前景物体等等。 

    作者: 小强鼓掌
    856
    1
  • AI前沿——深度学习技术

    别。开始通过传感器(例如CMOS)来获得数据。然后经过预处理、特征提取、特征选择,再到推理、预测或者识别。最后一个部分,也就是机器学习部分,绝大部分工作是在这方面做,也存在很多paper和研究。而中间三部分,概括起来就是特征表达。良好特征表达,对最终算法准确性起了

    作者: 运气男孩
    431
    2
  • 深度学习之构建机器学习算法

    合模型,损失函数和优化算法来构建学习算法配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习。无监督学习时,我们需要定义一个只包含 X 数据集,一个合适无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA第一个主向量模型定义为重建函数 r(x)

    作者: 小强鼓掌
    525
    1
  • 深度学习计算复杂度

    来自耶路撒冷希伯来大学研究者对单个神经元计算复杂度进行了研究,他们通过训练人工深度神经网络来模拟生物神经元计算,得出深度神经网络需要 5 至 8 层互连神经元才能表征(或达到)单个生物神经元复杂度。人类糊状大脑似乎与计算机处理器中固态硅芯片相去甚远,但科学家将二者进行

    作者: 运气男孩
    21
    1
  • 深度学习之构建机器学习算法

    合模型,损失函数和优化算法来构建学习算法配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习。无监督学习时,我们需要定义一个只包含 X 数据集,一个合适无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA第一个主向量:J(w) = Ex∼pˆdata

    作者: 小强鼓掌
    830
    3
  • 机器学习深度学习简介

    深度学习 1. 深度学习介绍 2. 深度学习原理 3. 深度学习实现 深度学习 1. 深度学习介绍 深度学习(Deep learning)是机器学习一个分支领域,其源于人工 神经网络研究深度学习广泛应用在计算机视觉,音频处理,自然语言处理等诸多领 域。 人工神经网络(Artificial

    作者: 南蓬幽
    发表时间: 2022-06-28 07:19:06
    363
    0
  • 深度学习应用开发》学习笔记-11

    2.5,学习率是0.01,那下一个尝试点是距离前一个点2.5*0.01=0.0025位置。(梯度是固定,还是每走一步都会变呢?)个人认为好学习率,不应该是一个固定值,而应该是先大后小。也就是先大步快速到达底部附近,再小步寻找最底部。学习率是学习开始之前就设置,叫超参

    作者: 黄生
    1128
    1
  • 机器学习——深度学习(Deep Learning)

    Learning是机器学习中一个非常接近AI领域,其动机在于建立、模拟人脑进行分析学习神经网络,最近研究了机器学习中一些深度学习相关知识,本文给出一些很有用资料和心得。 Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,

    作者: 格图洛书
    发表时间: 2021-12-29 16:20:46
    631
    0
  • 《MXNet深度学习实战》—1.2 深度学习框架

    缩短了。深度学习框架这些优点让其在开源之初就大受欢迎,同时大大加速了学术界和工业界对深度学习算法研究,所以最近几年各领域算法模型如雨后春笋般不断刷新各种指标。目前主流深度学习框架不到10个,而且大部分框架都由大公司工程师在维护,代码质量非常高,选择一个合适框架不仅能加

    作者: 华章计算机
    发表时间: 2019-06-16 16:24:22
    3395
    0
  • 【常见问答】国内智慧水务现状国外智慧水务发展趋势&案例解析

    实现远程抄表、远程诊断、远程控制、分时段计费等多种功能。减少了物业部门工作量及不必要纠纷。大幅提高收费通透性和办公效率,,实现信息共享同时,确保系统数据安全,达到企业数据信息化,营业流信息化规范要求,为企业科学化决策提供保障。

    作者: 国荣科技智慧城市
    53
    0
  • 资料学习 - 开源深度学习框架tinygrad

    深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型神经网络。而这些大公司也花费了很大精力来维护 TensorFlow、PyTorch 这样庞大深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精框架或者库。比如今年

    作者: RabbitCloud
    729
    5
  • 深度学习应用开发》学习笔记-10

    y=wx+b里w和b,也叫权重和偏差?在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度减少损失模型。这一过程称为经验风险最小化损失函数有L1,L2。L1是绝对值,L2是均方误差MSE,那么2个场景做损失比较时会有L1一样,L2不一样情况本来是

    作者: 黄生
    1431
    3
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    (AutoEncoder)、生成对抗网络 (GAN)等。深度学习方法处理计算机视觉问题过程类似于人类学习过程:我们搭建深度学习模型通过对现有图片不断学**结出各类图片特征,最后输出一个理想模型,该模型能够准确预测新图片所属类别。深度学习深度”体现在将数据转换为所需要数据层数之深。给定模型进行

    作者: QGS
    946
    0
  • 深度学习应用开发》学习笔记-07

    还有一个是vggnet,他问题是参数太大。深度学习问题:1面向任务单一,依赖于大规模有标签数据,几乎是个黑箱模型。现在人工智能基本由深度学习代表了,但人工智能还有更多。。。然后就开始讲深度学习开发框架。先整了了Theano,开始于2007年加拿大蒙特利尔大学。随着tens

    作者: 黄生
    827
    2
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好深度学习模型是怎么部署

    作者: 初学者7000
    878
    3
  • 深度学习特征提取

    传统机器学习需要人工提取数据特征,而深度学习通过层次化表示来完成特征提取。层次化表示是指用简单表示逐步表达较复杂表示。1. 如何理解简单和复杂表示? 2. 这种所谓层次化表示理论依据是什么?

    作者: RabbitCloud
    1163
    3
  • 深度学习模型结构

    对信息处理是分级。从低级提取边缘特征到形状(或者目标等),再到更高层目标、目标的行为等,即底层特征组合成了高层特征,由低到高特征表示越来越抽象。深度学习借鉴这个过程就是建模过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    646
    2
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关基本知识,其中包括深度学习发展历程、深度学习神经 网络部件、深度学习神经网络不同类型以及深度学习工程中常见问题。

  • PyTorch深度学习技术生态

    Runtime是一种跨平台深度学习训练和推理机加速器,与深度学习框架,可以兼容TensorFlow、Keras和PyTorch等多种深度学习框架。ONNX (Open Neural Network Exchange) 是一种用于表示深度学习模型开放格式,ONNX定义了一组通用运算符、机器学

    作者: 可爱又积极
    1292
    0
  • 深度学习之正则化

    机器学习一个核心问题是设计不仅在训练数据上表现好,并且能在新输入上泛化好算法。在机器学习中,许多策略显式地被设计为减少测试误差(可能会以增大训练误差为代价)。这些策略被统称为正则化。我们将在后文看到,深度学习工作者可以使用许多不同形式正则化策略。事实上,开发更有效正则化

    作者: 小强鼓掌
    527
    0