已找到以下 10000 条记录
  • 深度学习之无监督学习算法

    监督算法之间区别没有规范,严格定义,因为没有客观判断来区分监督者提供值是特征还是目标。通俗地说,无监督学习是指从不需要人为注释样本分布中抽取信息大多数尝试。该术语通常与密度估计相关,学习从分布中采样,学习从分布中去噪,需要数据分布流形,或是将数据中相关样本聚类。 

    作者: 小强鼓掌
    950
    1
  • 软件分析研究

    | +智能,见未来 博士招聘 软件分析研究员 软件分析研究员 领域方向:软件工程 工作地点: 北京、深圳、杭州、上海 软件分析研究员 软件工程 北京、深圳、杭州、上海 岗位职责 1、围绕智能化开发服务进行创新探索,基于代码分析、数据挖掘、机器学习等手段,面向软件开发人员孵化并交付高

  • 深度学习笔记》笔记(二)

    神经网络结构从普通全连接神经网络,发展到卷积神经网络、循环神经网络、自编码器、生成式对抗网络和图神经网络等各种结构, 但BP算法一直是神经网络一个经典和高效寻优工具。附神经网络早期一些发展历程1943年,WarrenMcCulloch和WalterPitts于《神经元与行

    作者: 黄生
    48
    3
  • 深度学习VGG网络

    VGG原理VGG16相比AlexNet一个改进是采用连续几个3x3卷积核代替AlexNet中较大卷积核(11x11,7x7,5x5)。对于给定感受野(与输出有关输入图片局部大小),采用堆积小卷积核是优于采用大卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂模式,而且代价还比

    作者: 我的老天鹅
    579
    16
  • 《MXNet深度学习实战》—1.1.3 深度学习

    搭建起来一样,稍有不同是,在神经网络中层类型更多样,而且层与层之间联系复杂多变。深度学习深度主要就是来描述神经网络中层数量,目前神经网络可以达到成百上千层,整个网络参数量从万到亿不等,所以深度学习并不是非常深奥概念,其本质上就是神经网络。神经网络并不是最近几年才

    作者: 华章计算机
    发表时间: 2019-06-16 16:21:27
    3404
    0
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好深度学习模型是怎么部署

    作者: 初学者7000
    879
    3
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差和作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差和作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    1444
    5
  • 微认证课程学习形式是什么样? - 华为云开发者学堂

    微认证课程学习形式是什么样? 微认证课程学习分为在线视频学习和在线实验操作。 父主题: 微认证课程学习常见问题

  • 深度学习应用开发》学习笔记-13

    先定义训练数据占位符,定义了2个,1个是特征值x,1个是标签值y然后定义模型函数,这个函数有3个参数,1个就是上面说x,还有2个是参数,分别是w和b,就是2个参数斜率和位移而上面的2个参数,要用tf.Variable来声明来创建变量,它是会变,在训练中学习,所以给它初值是多

    作者: 黄生
    457
    0
  • 深度学习应用开发》学习笔记-31

    先探索一下tf2里读取出数据。 每张图片数据化表示是28*28=784个数值,每个数值类型是numpy.uint8,uint8取值范围是0-255, 这个可能就是所谓256位图吧? 每张图片会有自己标签,就是表示这张图片是数字0-9中哪个。 另外用reshape重整了一下图像,比较有趣

    作者: 黄生
    520
    0
  • 计算化学深度学习

    在回顾深度神经网络表现时,我们观察到在不同研究课题中,针对非神经网络最先进模型一致表现优异,而基于深度神经网络模型通常超出了各自任务“玻璃天花板”预期。加上用于训练深度神经网络GPU加速计算成熟度以及用于训练这些网络化学数据指数增长,我们预计深度学习算法将成为计算化学的宝贵工具。

    作者: DrugAI
    发表时间: 2021-07-14 21:06:17
    2200
    0
  • 深度学习数据收集

    深度学习需要大量数据集,但是现实是只有零星数据,大家有什么收集数据经验和经历,还有什么收集数据好办法

    作者: 初学者7000
    745
    3
  • PyTorch深度学习技术生态

    Runtime是一种跨平台深度学习训练和推理机加速器,与深度学习框架,可以兼容TensorFlow、Keras和PyTorch等多种深度学习框架。ONNX (Open Neural Network Exchange) 是一种用于表示深度学习模型开放格式,ONNX定义了一组通用运算符、机器学

    作者: 可爱又积极
    1292
    0
  • 深度学习应用开发》学习笔记-12

    数据不是收集,是自己生成,好吧~一个简单例子学习没关系%matplotlib inline这个是为了让在jupyter在浏览器里能够显示图像。生成y=2x+1随机数据,数据加背景噪声限值0.4生成等差数列,100个x_data=np.linspace(-1,1,100)y_data=2*x_data+1

    作者: 黄生
    1024
    2
  • 深度学习时序图网络

    一个通用,有效框架,用于深度学习动态图表示为时间事件序列。由于内存模块和基于图运算符新组合,TGNs能够显著优于以前方法,同时在计算效率上也更高。此外,我们还展示了之前几个用于学习动态图模型可以转换为我们框架具体实例。我们对框架不同组件进行了详细消歧研究,并设计

    作者: QGS
    763
    1
  • 深度学习Attention机制

    Attention,即Attention输出向量分布是一种one-hot独热分布或是soft软分布,直接影响上下文信息选择。加入Attention原因:1、当输入序列非常长时,模型难以学到合理向量表示2、序列输入时,随着序列不断增长,原始根据时间步方式表现越来越差,由于原始时间步模型设计结构有缺

    作者: 玉箫然
    1035
    0
  • 自动学习生成模型,存储在哪里?支持哪些其他操作? - AI开发平台ModelArts

    自动学习生成模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成模型,不支持下载使用。 图1 自动学习生成模型

  • 深度学习应用开发》学习笔记-09

    n阶张量/n维数组流,表示张量数据流动/计算过程。每一个张量有一个唯一类型,运算类型不匹配会报错,比如int和float32运算就不行,这个是比较严格,可以先通过tf.cast()做类型转换常量定义时候是可以按需求做类型自动转换、reshape但是变量定义中,类型还是根据初值来定,而设定需求类型并没有生效:v2=tf

    作者: 黄生
    1746
    3
  • 算法创新Lab_研究方向_瑶光

    “决策”)所分得奖励,此时“状态State”与“奖励Reward”关系就是资源池选择哪台机器来满足请求决策依据。 更进一步,不同体系架构云服务器、不同租户间QoS要求,意味着强化学习算法应对环境在不停变化,就像上图不断复杂变换迷宫。而强化学习训练用历史数据不具有概