检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
商业竞争力。 2. 深入参与AI智能体产品的数据构建、指令微调、模型训练和评估工作。 3. 持续调研跟踪AI智能体领域的创新项目,并参与讨论演进路线与商业场景。 1. 熟悉深度学习、强化学习、自然语言处理等AI背景知识,需要有相关领域的顶级会议或期刊论文,有大模型(GPT/Lla
深度学习服务是基于华为云强大高性能计算提供的一站式深度学习平台服务、DLS视频教程,可帮助您快速了解DLS。
深度学习相结合的方法。本文将介绍集成学习的基本概念和深度学习的优势,然后讨论集成学习在深度学习中的应用,并总结结合集成学习的深度学习算法的优势和挑战。 什么是集成学习 集成学习是一种通过将多个模型的预测结果进行组合来提高模型性能的方法。常见的集成学习方法包括投票法、平均法和堆叠法
也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型
近年来,由于多模态数据的快速增长,跨模态检索受到了研究者的广泛关注,它将一种模态的数据作为查询去检索其它模态的数据。例如,用户可以用文本检索图像或/和视频。由于查询及其检索结果模态表征的差异,如何度量不同模态之间的相似性是跨模态检索的主要挑战。随着深度学习技术的推广以及其在计算机视
之前好像有听人介绍说吴明辉的课程很不错,最近刚好在中国大学APP上看到他的一个人工智能相关的课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow的实践》。是一个入门级别的课程,不需要人工智能的基础,不需要太多的数学知识,也不需要什么编程经验。我觉得很
主要内容包括DWS概述、SQL进阶、数据库设计与管理、数据库安全及运维。 立即学习 MRS中级工程师课程 主要介绍MRS服务的基本概念,MRS集群部署过程中重要参数的解析、注意事项,以及大数据迁移组件的基础知识。 立即学习 DAYU中级工程师课程 为大家介绍DAYU基础概述、HCS部署、使
新建研究 进入“专题”页面,单击“新建研究”。 图1 新建研究 参考表1,设置运行信息。 表1 参数说明 参数 说明 选择项目 选择创建好,并带有数据的项目。 研究名称 可自定义研究名称。 流程 选择资产市场中订阅的Docking Summary流程。 配体分子 选择上传的配体小分子文件。
成本和可靠性最优的解决方案; 3、基于机器学习、数据挖掘构建介质应用的智能数据分析平台,实现数据驱动介质应用创新。 岗位要求 1、熟悉计算机体系结构,对存储系统和Memory系统有较好的了解; 2、对介质(SSD/DRAM/SCM等)的原理和内部关键技术有一定研究; 3、熟悉数据挖掘和数据分析等相关领域技术;
平滑估计。2、基于实例的算法基于实例的算法常常用来对决策问题建立模型,这样的模型常常先选取一批样本数据,然后根据某些近似性把新数据与样本数据进行比较。通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。常见的算法包括 k-Nearest
无监督学习算法(unsupervised learning algorithm) 训练含有很多特征的数据集,然后学习出这个数据集上有用的结构性质。在深度学习中,我们通常要学习生成数据集的整个概率分布,显式地,比如密度估计,或是隐式地,比如合成或去噪。还有一些其他类型的无监督学习
方式——正视的、侧视的;四只脚的、六只脚的……可谓五花八门,形态各异。甲骨文的研究真是既有趣又充满挑战。 要攻克甲骨文破译这一学界的超级难题,新技术的跨界融合提供了新的思路。首都师范大学甲骨文研究中心莫伯峰教授联手华为云AI工程师团队,借助云计算、AI及大数据等技术力量打造了一系
辛顿对这项技术的坚定信念最终带来了巨大的回报:在第四年的图像网比赛(ImageNet competition)中,几乎所有参赛队都在使用深度学习,并获得了神奇的准确性。很快,深度学习便被应用于图像识别之外的任务。去年,由于他在这一领域的特殊贡献,辛顿与人工智能的先驱们YannLeCun和Yoshua
大的动力。物体的识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。它是以数字图像处理与识别为基础的结合人工智能、系统学等学科的研究方向,其研究成果被广泛应用在各种工业及探测机器人上。现代图像识别技术的一个不足就是自适应性能差,一旦目标图像被较强的噪声污染
通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理
提高网络安全性。日志挖掘的技术层出不穷,随着网络的不断发展,在面对新型或无先验规则的攻击模式下,聚类分析在数据挖掘中应用的更为广泛,因此,基于聚类的日志分析方法在面对瞬息万变的网络环境有着重要的研究价值与意义,此外,安全日志作为记录网络安全设备运行的审计手段,越来越得到人们的重视,甚至被称为“暗数据”
缩短了。深度学习框架的这些优点让其在开源之初就大受欢迎,同时大大加速了学术界和工业界对深度学习算法的研究,所以最近几年各领域的算法模型如雨后春笋般不断刷新各种指标。目前主流的深度学习框架不到10个,而且大部分框架都由大公司的工程师在维护,代码质量非常高,选择一个合适的框架不仅能加
测照片中的车。我们知道,汽车有轮子,所以我们可能会想用车轮的存在与否作为特征。不幸的是,我们难以准确地根据像素值来描述车轮看上去像什么。虽然车轮具有简单的几何形状,但它的图像可能会因场景而异,如落在车轮上的阴影、太阳照亮的车轮的金属零件、汽车的挡泥板或者遮挡的车轮一部分的前景物体等等。
4、具备语义计算/理解、问答系统、文本摘要、相似度计算方面算法相关研究及经验者的优先; 5、在自然语言处理/机器学习顶级会议/期刊(ACL/EMNLP/NIPS/ICML/AAAI等)有发表过论文的优先; 6、良好的自我学习能力和自驱力,以及良好的沟通能力和团队协作能力。 投递方式 邮件发送到huangguoqiang2@huawei
有监督学习,无监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。那么无监督学习的典型应用模式是什么呢?说出来之后你就会觉得无监督学习没有那么神秘了,那就是聚类。一个比较典型的例子就是超市里货架商品摆放,