检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
台还允许用户实时调整参数,以便更好地满足您的需求。 支持区域: 西南-贵阳一 使用能力调测与盘古NLP大模型进行对话问答 应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 支持区域:
设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。 Agent使用的模型必须为Pangu-NLP-N2-Default模型,或其衍生模型,使用通用模型或其他模型无法运行。当前的moduleVersion需要配置为“N2_agent_v2”,如
和各项云服务技术的安全功能和性能本身,也包括运维运营安全,以及更广义的安全合规遵从。 租户:负责云服务内部的安全,安全地使用云。华为云租户的安全责任在于对使用的IaaS、PaaS和SaaS类云服务内部的安全以及对租户定制配置进行安全有效的管理,包括但不限于虚拟网络、虚拟主机和访客
删除。支持创建评估任务,选择候选提示词和需要使用的变量数据集,设置评估算法,执行任务自动化对候选提示词生成结果和结果评估。 提示词管理 提示词管理支持用户对满意的候选提示词进行保存管理,同时支持提示词的查询、删除。 图1 提示词工程使用流程 父主题: 提示词工程
son”。 X-Auth-Token:用户Token,可选,当使用Token方式认证时,必须填充该字段。用户Token请参考认证鉴权中的“Token认证”。 公有云API同时支持使用AK/SK认证,AK/SK认证是使用SDK对请求进行签名,签名过程会自动往请求中添加Authori
模型刚开始训练时,如果选择一个较大的学习率,可能导致模型训练不稳定。选择使用warmup热身的方式,可以使开始训练的热身阶段内学习率较小,模型可以慢慢趋于稳定,待模型相对稳定后再逐渐提升至预设的最大学习率进行训练。使用热身可以使得模型收敛速度更快,效果更佳。 模型保存步数 1000 1000~2000中10的倍数
盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS数据保护技术说明:https://support
模型刚开始训练时,如果选择一个较大的学习率,可能导致模型训练不稳定。选择使用warmup热身的方式,可以使开始训练的热身阶段内学习率较小,模型可以慢慢趋于稳定,待模型相对稳定后再逐渐提升至预设的最大学习率进行训练。使用热身可以使得模型收敛速度更快,效果更佳。 当前盘古-NLP-N4-基模型支持自监督训练。
该签名值以请求者的访问密钥(AK/SK)作为加密因子,结合请求体携带的特定信息计算而成。通过访问密钥(AK/SK)认证方式进行认证鉴权,即使用Access Key ID(AK)/Secret Access Key(SK)加密的方法来验证某个请求发送者身份。 父主题: 安全
评估资源:依据选择的模型数据自动给出所需的评估资源。 打分模式:当前版本打分模式仅支持基于规则,用户不可选,且暂无人工打分。基于规则打分:使用预置的相似度或准确率打分规则对比模型生成结果与真实标注的差异,从而计算模型指标。 评估数据: 选择已创建并发布的评估数据集。 基本信息: 输入任务的名称和描述。
的内容片段,可以有效降低首token的审核时延,同时确保用户看到的内容是经过严格审核的。 图3 大模型内容审核 购买内容审核套餐包时,如果使用“文本补全”和“多轮对话”功能,需要选择“文本内容审核”套餐。 父主题: 准备工作
-SQL模型、盘古-NLP-N2-Agent模型、盘古-NLP-N2-Code模型)经有监督微调(SFT)训练后的用户模型进行边缘部署。 使用边缘部署功能需要在ModelArts服务中开通“边缘资源池”功能,该功能为白名单特性,需要联系ModelArts服务技术支持人员进行开通。
消耗模式”,减少推理资源的消耗。 图2 创建压缩任务 输入任务名称和描述,单击“立即创建”,即可下发压缩模型任务。模型压缩任务完成后,可以使用压缩后的模型进行部署操作。
"meeting_room_status_query", toolDesc = "查询会议室的状态,是否被预定或者正在使用中", toolPrinciple = "请在需要预定会议室之前使用,查询会议室状态判断是否可以预定", inputDesc = "", outPutDesc = "会议室状态")
API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(多轮对话)(/chat/completions) Java、Python、Go、.NET、NodeJs 基于对
通过知识库提升AI助手在特定领域问题的回答效果。 高级配置 工具召回策略 设置从所有可用工具中选择最相关的工具来处理用户的问题策略。 类型:使用词嵌入技术(embedding)来衡量用户问题与工具之间的相关性。 中断策略:当相关性得分小于设置的阈值,则不召回任何工具,终止后续流程。
ent中唯一。 description。工具的描述,建议为中文,尽可能的简短描述工具。 principle。何时使用该工具,为重要参数,该描述直接影响LLM对工具使用的判断,尽量描述清楚。如果Agent实际执行效果不符合预期,可以调整。 input_desc。工具的入参描述 ,为
表示模型生成的答案中包含的tokens的数量。 prompt_tokens Number 表示生成结果时使用的提示文本的tokens的数量。 total_tokens Number 对话过程中使用的tokens总数。 流式(stream参数为true) 状态码: 200 表7 流式输出的数据单元
environ["SDK_CONFIG_PATH"] = "./llm.properties" 完整配置项如下: 配置项中的密码等字段建议在配置文件或者环境变量中密文存放,使用时解密,确保安全,详见配置文件敏感信息加密配置。 ################################ GENERIC CONFIG
永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302 Found 资源被临时移动。 303 See Other 查看其他地址,使用GET和POST请求查看。 304 Not Modified 所请求的资源未修改,服务器返回此状态码时,不会返回任何资源。 305 Use