检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts部署在线服务时,如何避免自定义预测脚本python依赖包出现冲突? 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内
实时推理的部署及使用流程 在创建完模型后,可以将模型部署为一个在线服务。当在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。访问在线服务时,您可以根据您的业务需求,分别确认使用何种认证方式
Cluster资源池上使用Snt9B完成推理任务 场景描述 本案例介绍如何在Snt9B环境中利用Deployment机制部署在线推理服务。首先创建一个Pod以承载服务,随后登录至该Pod容器内部署在线服务,并最终通过新建一个终端作为客户端来访问并测试该在线服务的功能。 图1 任务示意图
可以进行在线推理预测,也可以通过调用API把AI推理能力集成到自己的IT平台。具体请参见推理部署使用场景。 Standard使用流程说明 ModelArts Standard平台提供了从数据准备到模型部署的AI全流程开发,兼容开发者的使用习惯,支持多种引擎和用户场景,使用自由度较
有云。 推理 指按某种策略由已知判断推出新判断的思维过程。人工智能领域下,由机器模拟人类智能,使用构建的神经网络完成推理过程。 在线推理 在线推理是对每一个推理请求同步给出推理结果的在线服务(Web Service)。 批量推理 批量推理是对批量数据进行推理的批量作业。 昇腾芯片
时表示模型可以使用。 步骤三:使用订阅模型部署在线服务 模型订阅成功后,可将此模型部署为在线服务 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 图2 部署模型 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值,此处以“商超商品识别服务”为例。
QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版
auto_awq.html。 步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
TensorFlow和MindSpore等引擎的AI模型。 支持通过JupyterLab工具在线打开Notebook,具体请参见通过JupyterLab在线使用Notebook实例进行AI开发。 支持本地IDE的方式开发模型,通过开启SSH连接,用户本地IDE可以远程连接到Mod
to_awq.html。 Step2 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户, vLLM使用transformers版
on/auto_awq.html。 Step3 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
on/auto_awq.html。 Step3 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
订阅使用 查找和收藏资产 订阅免费算法 订阅免费模型 下载数据 使用Notebook代码样例 使用镜像 使用AI案例 订阅Workflow 父主题: AI Gallery(旧版)
使用窍门 创建项目时,如何快速创建OBS桶及文件夹? 自动学习生成的模型,存储在哪里?支持哪些其他操作? 父主题: 使用自动学习实现零代码AI开发
例如您的模型是Pytorch框架,部署为在线服务时出现告警:ModuleNotFoundError: No module named ‘model_service.tfserving_model_service’,则需要您在推理代码customize_service.py里使用from model_service
运行完成的工作流会自动部署为相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”直接跳转进入在线服务详情页,或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,选择“预测”页签。
“就绪”时表示模型可以使用。 步骤3:使用订阅模型部署在线服务 模型订阅成功后,可将此模型部署为在线服务 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值,此处以“商超商品识别服务”为例。
在详情页面您可以查看镜像的AI引擎框架、使用芯片、镜像URL、包含的依赖项等信息。 复制镜像URL,可以在ModelArts控制台“镜像管理”注册并使用该镜像。 父主题: 订阅使用
on/auto_awq.html。 Step3 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: