检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
问题描述很多问题的优化可以建模为基于序列的优化,如旅行商问题(TSP),排产问题,各类资源分配问题等,不同的序列有不同的优度。寻找最优序列的问题是NP难问题(其解空间为N!)。解决方法常用两种方法解决这类问题:一种是启发式算法,基于问题本身的规则得到较好的可行解,本质是贪心算法,这种方法
批量梯度下降算法和随机梯度下降算法之间的折中算法。每次随机选取样本数量为b(b<m)的小批量样本。这样一方面节省了计算整个批量的时间,同时用小批量计算的梯度方向也会比基于一个样本的随机梯度方向更加准确。小批量梯度下降算法如算法2.1所示。算法2.1 小批量梯度下降算法输入:数据集
代价函数的信息通过网络向后流动,以便计算梯度。计算梯度的解析表达式是很直观的,但是数值化地求解这样的表达式在计算上的代价可能很大。反向传播算法使用简单和廉价的程序来实现这个目标。反向传播这个术语经常被误解为用于多层神经网络的整个学习算法。实际上,反向传播仅指用于计算梯度的方法,而
Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。 Mo
衰减函数可以有多种形式,一个常用的衰减函数是 其中.a是一个常数,可以取为0.5~0.99,它的取值决定了降温的过程。小的衰减量可能导致算法进程迭代次数的增加,从而使算法进程接受更多的变换,访问更多的邻域,搜索更大范围的解空间,返回更好的最终解。同时由于在值上已经达到准平衡,则在时只需少量的变换就可达
于分类错误的样本,将会产生更大的惩罚值和更大的梯度。逻辑回归模型从回归概率的角度定义了线性二分类问题。图2.6(a)给出了线性分类器的图形表示,深色样本为y=0,浅色样本为y=1,而中间的曲线为训练得到的线性分类边界z(x)=wTx=0。当z(x)<0,即点在分界线的上方时,预测
目标检测任务,就是要让计算机不仅能够识别出输入图像中的目标物体,还能够给出目标物体在图像中的位置。在深度学习正式成为计算机视觉领域的主题之前,传统的手工特征图像算法一直是目标检测的主要方法。在早期计算资源不充足的背景下,研究人员的图像特征表达方法有限,只能尽可能地设计更加多元化的检测算法进行弥补,包括早期的尺度不变特征
生出来的。 蚁群算法数学模型 应该说前面介绍的蚁群算法只是一种算法思想,要是想真正应用该算法,还需要针对一个特定问题, 建立相应的数学模型。现仍以经典的TSP问题为例,来进一步阐述如何基于蚁群算法来求解实际问题。 对于TSP问题,为不失一般性,设整个蚂蚁群体中蚂蚁的数量为m
数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在
单击右上角“进入商城”,进入好望商城。 输入关键字搜索需要的算法,或者根据算法类型、应用场景等搜索符合要求的算法。 单击想要购买的算法,查看算法详情。 您可以查看“规格说明”,了解算法适配的具体设备型号以及软件版本,请记录此信息,安装算法前需要确保设备型号及软件版本符合此要求。 单击“试用”或“购买”,跳转到购买界面。
和参数调优能力。这导致大多数企业都不具备AI开发能力。 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础
回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即线性回归和逻辑回归。 线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳
解释由于经典机器学习在实际应用过程中需要结合业务领域知识构建特征工程,这个过程中有很多手工作,因此深度学习方法在不同任务的算法中使用深度多层神经网络从原始数据中学习更好的特征表示,如分类任务中的深度度量学习,聚类任务中的深度学习聚类方法等,取得了比原始算法更好的效果传统决策树也可
前面的算法中的一个显著特征就是我的训练数据中包含了标签,训练出的模型可以对其他未知数据预测标签。在下面的算法中,训练数据都是不含标签的,而算法的目的则是通过训练,推测出这些数据的标签。这类算法有一个统称,即无监督算法(前面有标签的数据的算法则是有监督算法)。无监督算法中最典型的
我们将基于深度学习的三维重建算法简要地分为三部分,更详细的文献综述将会在后续的公众号的系列文章中做介绍:在传统三维重建算法中引入深度学习方法进行改进深度学习重建算法和传统三维重建算法进行融合,优势互补模仿动物视觉,直接利用深度学习算法进行三维重建1 在传统三维重建算法中引入深度学习方
单击某台摄像机后的按钮,启用算法。也可以一次选择多台摄像机,单击右上角的“开启”,启用算法。 暂停:停止启用算法。 关闭“算法描述”页签,单击算法后的图标,(例如),查看算法效果。您也可以登录到摄像机Web界面查看算法效果。 确保摄像机实况画面内存在待检测的物体,待检测物体会被框出来。
器和解码器之后尽可能多地保留信息,同时希望新的表示有各种好的特性,这也是自编码器的训练目标。为了实现不同的特性,我们可以设计不同形式的自编码器。 当设计特征或设计用于学习特征的算法时,我们的目标通常是分离出能解释观察数据的变差因素 (factors of variat
想要从数据结构和算法的层面去理解深度学习,需要做哪些尝试?
它由多个层次的神经元组成,每一层神经元都负责处理不同的特征。深度学习通过多层次的神经网络来提取数据的特征,并利用这些特征进行分类、预测和其他任务。 下图展示了人工智能、机器学习、深度学习之间的关系: 深度学习可被定义为以下四个基本网络框架中具有大量参数和层数的神经网络: 无监督预训练网络