检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
机器学习算法和一般优化算法不同的一点是,机器学习算法的目标函数通常可以分解为训练样本上的求和。机器学习中的优化算法在计算参数的每一次更新时通常仅使用整个代价函数中一部分项来估计代价函数的期望值。另一个促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的
了非常相似的贡献。使用整个训练集的优化算法被称为批量(batch)或确定性(deterministic)梯度算法,因为它们会在一个大批量中同时处理所有样本。这个术语可能有点令人困惑,因为这个词 “批量”也经常被用来描述小批量随机梯度下降算法中用到的小批量样本。通常,术语 “批量梯度下降”
IMPALA:大规模强化学习算法论文名称:Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures作者:Lasse Espeholt / Hubert Soyer / Remi
多的冗余使得降维算法在丢失更少信息的同时显现更大的压缩。 表示的概念是深度学习核心主题之一,因此也是本书的核心主题之一。本节会介绍表示学习算法中的一些简单实例。总的来说,这些实例算法会说明如何实施上面的三个标准。剩余的大部分章节会介绍其他表示学习算法以不同方式处理这三个标准或是介绍其他标准。
当我们使用机器学习算法时,我们不会提前固定参数,然后从数据集中采样。我们会在训练集上采样,然后挑选参数去降低训练集误差,然后再在测试集上采样。在这个过程中,测试误差期望会大于或等于训练误差期望。以下是决定机器学习算法效果是否好的因素: 1. 降低训练误差
源自这样一个视角,教员或者老师提供目标 y 给机器学习系统,指导其应该做什么。在无监督学习中,没有教员或者老师,算法必须学会在没有指导的情况下让数据有意义。尽管无监督学习和监督学习并非完全没有交集的正式概念,它们确实有助于粗略分类我们研究机器学习算法时遇到的问题。传统地,人们将回归,分类,
1、回归算法回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。在机器学习领域,人们说起回归,有时候是指一类问题,有时候是指一类算法,这一点常常会使初学者有所困惑。常见的回归算法包括:最小二乘法,逻辑回归,逐步式回归,多元自适应回归样条以及
我们使用反向传播作为一种策略来避免多次计算链式法则中的相同子表达式。由于这些重复子表达式的存在,简单的算法可能具有指数运行时间。现在我们已经详细说明了反向传播算法,我们可以去理解它的计算成本。如果我们假设每个操作的执行都有大致相同的开销,那么我们可以依据执行操作的数量来分析计算成
证、对比了两种算法。实验表明,SchedRL能够在两种场景下超过基线算法。下一步工作可以从如下几个角度展开研究: 1) 可扩展性:当服务器数量增加时,状态空间和动作空间都呈指数增长,给学习带来困难。云服务提供商在实际场景中经常需要在多个服务器之间调度请求,因此使学习过程具有可扩展性是一个重要的未来方向。
索了元学习的能力,同时在数据层面研究了异质信息网络的表达能力。在MetaHIN中,作者提出使用多方面的语义上下文来增强每个用户的任务,因此设计了一种新颖的语义增强型任务构建器,用于在元学习场景中捕获异质信息网络中的语义信息。进一步地,我们构建了一个协同适应元学习器。该学习器既具有
很多问题的优化可以建模为基于序列的优化,如旅行商问题(TSP),排产问题,各类资源分配问题等,不同的序列有不同的优度。寻找最优序列的问题是NP难问题(其解空间为N!)。详情请点击博文链接:https://bbs.huaweicloud.com/blogs/160953
based)的元启发式算法,例如: 模拟退火算法 (Simulated Annealing)和禁忌搜索算法(Tabu Search); 另外是基于群体(Population based)的元启发式算法,比如遗传算法(Genetic Algorithm),分散搜索算法(Scatter
solution based的元启发式算法,例如: Simulated Annealing和Tabu Search。 另外是基于Population based的元启发式算法,比如Genetic Algorithm,Scatter Search Algorithm,Particle Swarm
或试用中的算法,如图1所示。 图1 查看算法 单击算法所在行的图标,下载对应的算法。 可单击“全部任务”,查看所有算法的下载情况。 可在“系统功能 > 系统管理 > > 本地配置”界面“算法参数”中修改下载路径。 单击左上角的“返回设备”,返回商城首页。 安装并启用算法,如图2所示。
运筹优化算法与技术项目 运筹优化算法与技术项目 领域方向:人工智能 工作地点: 北京、深圳 运筹优化算法与技术项目 人工智能 北京、深圳 项目简介 面向机场、港口和物流等领域的资源调度与最优化问题,采用数学规划、启发式算法、进化算法等数学优化方法,结合机器学习与深度学习对历史数据
2006),如牛顿法。在本书大多数上下文中使用的优化算法适用于各种各样的函数,但几乎都没有保证。因为在深度学习中使用的函数族是相当复杂的,所以深度学习算法往往缺乏保证。在许多其他领域,优化的主要方法是为有限的函数族设计优化算法。在深度学习的背景下,限制函数满足Lipschitz 连续 (Lipschitz
专业高效的开发者在线技术支持服务 开发者学堂 云上学习、实验、认证的知识服务中心 开发者活动 开发者实训、热门活动专区 社区论坛 专家技术布道、开发者交流分享的平台 文档下载 AI平台ModelArts文档下载 更多产品信息 更多产品信息 产品术语解释 华为云服务等级协议 地区和终端节点 系统权限 增值服务
比其他算法更敏感,这通常有两个可能原因。一个是它们使用了很难在少量样本上精确估计的信息,另一个是它们以放大采样误差的方式使用了信息。仅基于梯度 g的更新方法通常相对鲁棒,并能使用较小的批量获得成功,如 100。使用Hessian矩阵 H,计算如 H−1g 更新的二阶方法通常需要更大的批量,如
15437推荐原因该论文介绍的工作是致力于预训练图神经网络,以期GNN能够学习到图数据的结构和特征信息,从而能帮助标注数据较少的下游任务。 论文已经被KDD 2020 收录。文章提出用生成模型来对图分布进行建模,即逐步预测出一个图中一个新节点会有哪些特征、会和图中哪些节点相连。在第一步中,通过已经观测到的
y 是函数的另外一组输入变量,但我们并不需要它们的导数。在学习算法中,我们最常需要的梯度是代价函数关于参数的梯度,即 ∇θJ(θ)。许多机器学习任务需要计算其他导数,来作为学习过程的一部分,或者用来分析学得的模型。反向传播算法也适用于这些任务,不局限于计算代价函数关于参数的梯度。通