检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据探索 数据探索介绍 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于增量数据会实时入库,因此可以通过定时执行数据探索任务来覆盖增量数据。
分词模型 模型名称 res-word-segmentation 功能1 -- 关键词提取(未排序) 将待处理的文本进行分词处理并筛选保留关键词。 URL POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选
删除场景 该接口用于删除场景,删除之后不能恢复,请您谨慎操作。 训练作业 新建训练作业 新建训练作业元数据,新建成功之后可手动执行此任务。 新建多个训练作业 批量新建作业。 查询训练作业 查询resource_id(数据源id或场景id)下的指定类型的作业。 修改训练作业参数 修改指定作业的元数据信息。
数据结构 当数据源创建完成,您可以进入数据源详情页面进行数据质量管理操作。数据质量管理操作可以将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。 数据结构介绍 数据结构步骤的主要目的是读取用户上传的离线数据,解析用户特征和物品特征中
回类型为物品或者用户,配置在线召回特征。在线召回的特征属性来自于公共配置的全局特征信息文件。 可单击“添加推荐候选集、添加在线候选集”配置多个候选集,作为当前在线流程的排序候选集。 说明: 在线候选集的延迟较推荐候选集较高,如无特殊需求,建议选择推荐候选集。 容错 容错用于数据请
重。 “用户分群”:数据源类型包括用户特征和物品特征,根据数据源筛选数据, 选出需要的属性。只能选择进行用户分组还是物品分组,分组内可配置多个特征。默认关闭。 “最大推荐数结果数”:指定召回的结果数量。 “开启时间跨度”:不开启取全部数据,开启则指定从数据源中取最近天数或小时数的行为数据计算相似度。默认关闭。
训练作业 新建训练作业 新建多个训练作业 查询训练作业 修改训练作业参数 删除训练作业 查询训练作业候选集 父主题: API
产品。如果物品项有多个,需要用英文逗号隔开。 图1 代码预测 表单:输入“ID”,并设置“最大推荐个数”。其中ID可以为用户ID或者物品ID,单击“预测”后显示预测结果,如图2所示。如果是关联推荐,则需要配置“物品项”,即推荐与物品项相关的产品。如果物品项有多个,需要用英文逗号隔开。
workspace_id}/resources/{resource_id}/job-instance res:job:add √ √ 新增多个训练作业 POST /v2.0/{project_id}/workspaces/{workspace_id}/resources/{res
准备离线数据源 在使用RES创建数据源时,您需要准备以下的3种基础数据包并上传至OBS。如果使用近线流程,需先将业务系统埋点日志转换成推荐系统指定格式,并实时写入DIS相应通道。本章节介绍了RES当前离线数据源和近线数据源的数据格式,您可以参考本章节说明,准备相应的数据。 目前数
多维度管理,支持运营规则设置,一站式推荐平台。 自动挖掘特征,采用AUTOML完成特征的自动挖掘和组合,提高特征选择效率。 高适用性,多种模板选择,适用多个应用场景。 使用便捷,一键式构建推荐系统,提供标准API接口,调用简单,便于被集成。 实时更新,具备实时更新能力,更快反馈用户的精准需求。
提交特征工程作业 功能介绍 该接口用于特征工程处理,包含数据预处理,特征提取和排序训练样本生成等。 URI POST /v1/{project_id}/etl-job 参数说明请参见表1。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String
认召回策略推荐数量,同优先级下的数据占比之和需要等于100%。 权重:根据权重加权融合计算多个召回候选集融合。分数计算规则:每个策略的所占权重和物品在每个召回候选集中所得的分数加权融合,多个策略中相同的物品会进行分数累加。权重大小之和要等于1。 过滤(黑名单) 离线过滤 对离线过
特征工程 特征工程可对推荐系统的离线数据进行处理,它包含两个功能: 从离线数据中提取用户、物品画像和RES内部通用格式数据; 把RES内部通用格式数据处理成训练排序模型所需的训练数据、测试数据等。 与功能对应,特征工程的两个任务分别是: 初始用户画像-物品画像-标准宽表生成 排序样本预处理
排序策略 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。排序模型可对LR、FM、FFM、DeepFM和PIN等模型进行训练,具体包括如下内容: 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机-DeepFM
提交排序任务API 功能介绍 用于提交排序训练作业。 URI POST /v1/{project_id}/rank-job 参数说明请参见表1。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String 项目编号,用于资源隔离。获取方法请参见获取项目ID。
计费说明 计费项 RES服务根据用户使用的不同资源分别进行收费。 计费支持区域:华北-北京四。 由于RES使用的离线数据需存储在OBS中,数据存储产生的费用,请参见《OBS价格说明》。 表1 推荐系统计费项说明 计费项 说明 存储资源 应用于物品画像和用户画像的存储计费,对用户和物品的总条目数统计进行收费。
排序策略-离线特征工程 表1 特征工程参数说明 参数名称 说明 名称 自定义离线特征工程名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 对于特征工程的描述信息。 待提取用户特征 排序模型需要经特征工程处理后的数据, 选择排序模型需要的用户特征,
通过DLF进行作业监控及任务异常重新启动 推荐系统提供了查询作业详情API接口,可返回作业详情。返回体中的作业状态字段“jobs.job_status”表示了当前任务的状态。 重新执行作业的API用来将任务以相同的配置重新执行一次。 通过查询作业详情API和重新执行作业的API可
命名实体识别模型 模型名称 res-default-ner 功能 将待处理的文本中的人名、地名、组织名提取出来。 URL POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 text 是 String 待处理的文本。