检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微
otebook。 解决方法 请到专属资源池页面初始化开发环境。 进入“专属资源池”页面,单击目标资源池“操作”列的“更多 > 设置作业类型”。 在“设置作业类型”页面,勾选“开发环境”,单击“确定”。此时“开发环境”的状态为“环境初始化中”,等到状态为“已启用”,即可使用新购买的专属资源池。
按需选择计算规格。单击“选择”,在弹窗中选择资源规格并设置运行时长控制,单击“确定”。 在“所在区”选择计算规格所在的区域。默认显示全部区域的计算规格。 选择计算规格不可用的资源会置灰。右侧“配置信息”区域会显示计算规格的详细数据,AI Gallery会基于资产和资源情况分析该任务是否支持设置“商品数量”,用户可以基于业务需要选择任务所需的资源卡数。
“指定用户”:表示仅特定用户可以查看及使用该资产。 “仅自己可见”:表示只有当前账号可以查看并使用该资产。 设置“时长限制”。 设置订阅者可以免费使用资产的时长,默认关闭,即无限期使用。如果打开时长限制,除了设置资产免费使用的时长,还可以设置到期后是否续订。 如果是更新已发布资产的版本。 “发布方式”选择“添加资产版本”。
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
vsix文件拖动到远端Notebook中。 右键单击该文件,选择Install Extension VSIX。 方法二:设置远端默认安装的插件 按照VS Code中设置远端默认安装的插件配置,即会在连接远端时自动安装,减少等待时间。 方法三:VS Code官网排查方式https://code
部署为一个AI应用。 登录ModelArts控制台,单击“资产管理 > AI应用 > 创建”,开始创建AI应用。 设置创建AI应用的相应参数。此处仅介绍关键参数,设置AI应用的详细参数解释请参见从OBS中选择元模型。 根据需要自定义应用的名称和版本。 模型来源选择“从对象存储服务
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以
最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-outpu
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下: { "bits": 8, "group_size":
1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下: { "bits": 8, "group_size":
1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下: { "bits": 8, "group_size":
1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下: { "bits": 8, "group_size":
如果是client数太多,尤其对于5G以上文件,OBS接口不支持直接调用,需要分多个线程分段复制,目前OBS侧服务端超时时间是30S,可以通过如下设置减少进程数。 # 设置进程数 os.environ['MOX_FILE_LARGE_FILE_TASK_NUM']=1 import moxing as
表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改
seed(seed) 设置random随机生成器的种子。 np.random.seed(seed) 设置numpy中随机生成器的种子。 torch.manual_seed(seed) 设置当前CPU的随机种子。 torch.cuda.manual_seed(seed) 设置当前GPU的随机种子。