检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业 配置作业的执行脚本,训练模型文件。 执行脚本是每个参与方的计算节点在本地会执行的模型训练、评估程序,用于基于本地的数据集训练子模型。
存储方式 指计算节点所属的CCE或IEF容器的工作负载,目前支持“OBS存储”和“主机存储”方式。“OBS存储”方式是将OBS服务中的路径映射到服务容器内的本地路径,“主机存储”方式是指将计算节点所在机器的本地路径映射到服务容器内的本地路径。
填写的用户名,需具有数据库的读写权限(参考修改权限)。“密码”为该用户登录RDS实例的密码。 “连接器类型”选择MySql时,需保证计算节点与数据库所在虚机的连通性,“驱动文件”需与目标MySQL数据库版本一致。
隐私规则防护 使用TICS的隐私规则防护能力确保数据安全。 前提条件 完成数据集发布。 操作步骤 进入多方安全计算的作业执行界面,单击创建。 图1 创建作业 在作业界面中,按照示例一和示例二提供的案例和SQL语句进行作业测试。
X-Language 是 String 根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 发送的实体的MIME类型 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 description String
您可以创建多方安全计算作业,根据合作方已提供的数据,编写相关sql作业并获取您所需要的分析结果,同时能够在作业运行保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。
删除中的空间无法进行空间回滚。 空间回滚的过程中会导致空间的不可用。 回滚过程的相关操作记录将会保存。 由于1.20.0版本架构变化,如果需要跨1.20.0版本回滚,则需要联系客服或技术支持人员,先刷新后台数据库,再通过TICS控制台进行空间回滚。
在“可信数据交换 > 数据申请 > 我创建的”的页签下可以查看、编辑、删除已创建的申请。 父主题: 可信数据交换
X-Language 是 String 根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 消息体的类型(格式),必选,默认取值为“application/json”,有其他取值时会在具体接口中专门说明。
X-Language 是 String 根据自己偏好的语言来获取不同语言的返回内容,zh-cn或者en_us Content-Type 是 String 发送的实体的MIME类型 agent-id 否 String 计算节点id,最大32位,由字母和数字组成 响应参数 状态码: 200
若可信节点因为节点故障等原因产生了主备切换的操作,会导致原先可信节点控制台登录地址改变。此时需重新登录TICS管理台,单击前往计算节点,登录最新的节点控制台。 图1 登录最新的节点控制台 原先的可信节点控制台登录后右上角会显示不互信。
查找待获取执行结果和作业报告的作业,单击操作栏的“历史作业”。 图4 历史作业 在历史作业列表中,单击操作栏的“执行结果”或者“作业报告”。在弹出的页面查看执行结果和作业报告。
查找待获取执行结果和作业报告的作业,单击操作栏的“历史作业”。 图4 历史作业 在历史作业列表中,单击操作栏的“执行结果”或者“作业报告”。在弹出的页面查看执行结果和作业报告。
查找待获取执行结果和作业报告的作业,单击操作栏的“历史作业”。 图4 历史作业 在历史作业列表中,单击操作栏的“执行结果”或者“作业报告”。在弹出的页面查看执行结果和作业报告。
开发环境简介 在进行多方安全计算应用开发时,要准备的环境如表1所示。 同时需要准备运行调测的Linux环境,用于验证应用程序运行正常。 表1 准备项 准备项 说明 购买TICS服务 在TICS控制台通过下单建立数据空间,或者将租户加入已有的数据空间。
云租户部署模式下,TICS服务可以按照选取的规格,为客户预置默认资源分配策略。 边缘节点部署模式下,使用的纳管节点为客户机器或者云上虚机,TICS服务无法主动感知到节点资源大小,需客户手动填入。
审计日志 审计日志页面是可信智能计算服务提供的一项审计数据流动的功能。通过计算节点侧审计页面信息,用户可以清晰地获知空间中的参与方通过该计算节点运行的任务详情。同时,部署计算节点时若开启BCS功能,审计数据会同步至区块链上。 计算节点侧查看审计日志 用户登录TICS控制台。
分类作业的预测结果为0/1标签以及正负样本概率,0表示负样本,1表示正样本;回归作业的预测结果为最后的样本得分。 “作业报告”为作业的详细信息,如作业输入条件、作业输出结果、执行环境、合作方信息、计算过程等。 图3 历史预测 父主题: 批量预测
查找待获取执行结果和作业报告的作业,单击操作栏的“历史作业”。 图4 历史作业 在历史作业列表中,单击操作栏的“执行结果”或者“作业报告”。在弹出的页面查看执行结果和作业报告。
横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。