检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建工作空间 前提条件 使用RES工作空间您需要具备如下权限: 请确保您已开通RES并完成密钥认证。 已经开通相关资源并进行全局配置。 创建工作空间 登录RES管理控制台。 您可以通过两种方式创建工作空间,进入“创建工作空间”页面,填写工作空间参数信息。详请参见表1。 在左侧导航
过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。过滤规则说明请参见图1。 图1 过滤规则 创建过滤规则 在“创建过滤规则”页面,用户可以对目标数据选择不同策略进行离线计算,得到合适的候选集。 创建过滤规则操作步骤如下: 在“离线作业”下,单击“过滤规则”页签,单击该
导入近线数据源 通过导入近线数据源,达到实时计算并更新用户画像、物品画像,实时更新增量数据的目的。 前提条件 按数据规范准备数据并上传至通道。具体上传方法请参见上传实时数据。 导入近线数据源 登录RES管理控制台,在左侧菜单栏中选择“数据源”,进入“数据源”列表页面。 在数据源列
创建跨源连接 在使用DLI进行推荐系统的离线和近线计算时,建议创建跨源连接,用于访问CloudTable的数据源,提高读写性能。 前提条件 已开通计算引擎DLI服务,创建集群并完成资源绑定。 创建跨源链接 DLI集群绑定完成后,创建跨源链接。步骤如下: 登录RES管理控制台,在“
组合作业 创建组合作业 通过创建组合作业,用户可以根据配置的策略规则进行离线计算得到不同策略的候选集ID,来进行在线流程计算,得到用户满意的推荐结果。组合作业具体实现请参见图1。 图1 组合作业 创建组合作业主要包括如下设置: 基本配置 资源选择 召回策略 过滤规则 排序策略 预览配置
数据探索 数据探索介绍 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于增量数据会实时入库,因此可以通过定时执行数据探索任务来覆盖增量数据。
特征工程 特征工程可对推荐系统的离线数据进行处理,它包含两个功能: 从离线数据中提取用户、物品画像和RES内部通用格式数据; 把RES内部通用格式数据处理成训练排序模型所需的训练数据、测试数据等。 与功能对应,特征工程的两个任务分别是: 初始用户画像-物品画像-标准宽表生成 排序样本预处理
数据导入 数据导入介绍 数据导入即读取经过“数据结构”生成的数据,对每条数据进行校验。推荐系统保留字段需校验类型和数据合法性、自定义字段校验类型,输出错误报告。如果数据完全符合要求,会生成推荐系统所需要的宽表和画像数据。 宽表:推荐系统内部格式,以行为数据为主,将行为数据中涉及到的用户数据和物品数据整合成一条数据。
创建自定义场景 自定义场景基于用户群体不同推荐场景的需求,提供了多种多样的推荐策略和算法,实现了端到端的自定义推荐场景搭建,使每一个推荐场景都能得到针对性的推荐效果提升。 前提条件 已经存在创建成功并完成数据探索的数据源。 由于训练作业运行需消耗资源,确保账户未欠费。 确保您使用的OBS目录与RES在同一区域。
创建智能场景 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。
数据结构 当数据源创建完成,您可以进入数据源详情页面进行数据质量管理操作。数据质量管理操作可以将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。 数据结构介绍 数据结构步骤的主要目的是读取用户上传的离线数据,解析用户特征和物品特征中
近线作业 近线作业简介 近线作业为推荐系统提供实时计算能力。近线作业以数据接入服务DIS中的数据为数据源,实时计算并更新用户画像、物品画像和推荐候选集等数据。使用近线作业,用户需先将业务系统埋点日志转换成实时日志指定格式,并实时写入DIS相应通道。近线作业具体实现请参见图1。 图1
召回策略 召回是指对大量的物品做初选,为每一个用户形成个性化侯选集。召回策略中内置了多种召回方式,用户可根据自己场景选择。召回策略对应流程请参见图1。 图1 召回策略 推荐系统支持的召回方式有: 基于特定行为热度推荐 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐
排序策略 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。排序模型可对LR、FM、FFM、DeepFM和PIN等模型进行训练,具体包括如下内容: 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机-DeepFM