检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 图1 创建训练作业 训练作业启动命令中输入: cd /home/ma-user/work/Qwen-VL; ln -s ${DATA}/ qwenvl_dataset;
响应参数 状态码:201 表4 响应Body参数 参数 参数类型 描述 result String 认证结果。 请求示例 对在线服务进行鉴权。设置付费工作流计费周期为“day”,付费工作流可使用的时间为“100”。 POST https://{endpoint}/v2/{projec
m-user01。 默认为空,表示创建名称为modelarts_agency的委托。 响应参数 无 请求示例 创建ModelArts委托。设置委托名称后缀为“iam-user01”。 POST https://{endpoint}/v2/{project_id}/agency {
训练作业、算法的规格信息。 表28 algorithm 参数 参数类型 描述 code_dir String 算法启动文件所在目录绝对路径。 boot_file String 算法启动文件绝对路径。 inputs inputs object 算法输入通道信息。 outputs outputs
ModelArts作为华为云上的AI开发平台,提供交互式云上开发环境,包含标准化昇腾算力资源和完整的迁移工具链,帮助用户完成昇腾迁移的调测过程,进一步可在平台上将迁移的模型一键部署成为在线服务向外提供推理服务,或者运行到自己的运行环境中。 MindSpore Lite 华为自研的AI推理
属资源池,详情请参见创建专属资源池。 训练模型:可以在ModelArts服务中进行,也可以在您的本地开发环境进行,本地开发的模型需要上传到华为云OBS服务。 创建模型:把模型文件和推理文件导入到ModelArts的模型仓库中,进行版本化管理,并构建为可运行的模型。 部署服务:模型
|── alpaca_gpt4_data.json # 微调数据文件 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账
|── alpaca_gpt4_data.json # 微调数据文件 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账
_url}参见镜像地址获取。 docker pull {image_url} Step3 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂
__instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。 处理方法 如果超过最大递归深度,建议您在启动文件中增大递归调用深度,具体操作如下: import sys sys.setrecursionlimit(1000000) 父主题: 业务代码问题
API网关地址环境变量 作业元信息环境变量 约束限制 为了避免新设置的环境变量与系统环境变量冲突,而引起作业运行异常或失败,请在定义自定义环境变量时,不要使用“MA_”开头的名称。 如何修改环境变量 用户可以在创建训练作业页面增加新的环境变量,也可以设置新的取值覆盖当前训练容器中预置的环境变量值。
_url}参见镜像地址获取。 docker pull {image_url} Step3 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂
ge_url}参见镜像地址获取。 docker pull {image_url} 步骤三:启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂
_url}参见镜像地址获取。 docker pull {image_url} Step3 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂
在Windows的“服务”中,找到Grafana,将其开启,如果已经开启,则直接进入4。 登录Grafana。 Grafana默认在本地的3000端口启动,打开链接http://localhost:3000,出现Grafana的登录界面。首次登录用户名和密码为admin,登录成功后请根据提示修改密码。
ge_url}参见镜像地址获取。 docker pull {image_url} 步骤三:启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂
子账号的权限,由主用户来控制,主用户通过IAM的权限配置功能设置用户组的权限,从而控制用户组内的子账号的权限。此处的授权列表均按照ModelArts和其他服务的系统预置策略来举例。 表1 服务授权列表 待授权的服务 授权说明 IAM权限设置 是否必选 ModelArts 授予子账号使用ModelArts服务的权限。
loat8_e4m3fn"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化
Free NoDiscount instance_num Integer 当前用户创建的该规格实例的数量。 duration Integer 启动后设置的自动停止时间,单位为秒。 store_time Integer 该规格实例处于非活跃状态,在数据库最长保存的时长。单位为小时。 默认为“-1”
每个资源池至少需要有一个节点池,当只有一个节点池时不支持删除。 查看节点池的存储配置 在节点池管理的更新页面,可以查看该节点池配置的系统盘、容器盘或数据盘的磁盘类型、大小、数量、写入模式、容器引擎空间大小、挂载路径磁盘配置等参数。 在Lite资源池的扩缩容页面,也可以查看节点池的存储配置信息。