检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
由于发布后的数据集不会默认启动数据特征分析,针对数据集的各个版本,需手动启动特征分析任务。在数据特征页签下,单击“启动特征分析”。 在弹出的对话框中配置需要进行特征分析的数据集版本,然后单击“确定”启动分析。 “版本选择”,即选择当前数据集的已发布版本。 图1 启动数据特征分析任务 数据特
ModelArts的Notebook是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf
管理API Key 在调用MaaS部署的模型服务时,需要填写API Key用于接口的鉴权认证。本文介绍如何创建或删除API Key。 创建API Key 登录ModelArts Studio控制台,在顶部导航栏选择目标区域。 在左侧导航栏,单击“API Key管理”。 在“API
Code。VS Code安装请参考安装VS Code软件。 图4 下载并安装VS Code 如果用户之前未安装过ModelArts VS Code插件,此时会弹出安装提示,请单击“Install and Open”进行安装;如果之前已经安装过插件,则不会有该提示,请跳过此步骤,直接执行5。 图5
管理AI Gallery模型 编辑模型介绍 资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在模型详情页,选择“模型介绍”页签,单击右侧“编辑介绍”。 编辑模型基础设置和模型描述。 表1 模型介绍的参数说明 参数名称 说明 基础设置
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界
推理前的权重合并转换 模型训练完成后,训练的产物包括模型的权重、优化器状态、loss等信息。这些内容可用于断点续训、模型评测或推理任务等。 在进行模型评测或推理任务前,需要将训练后生成的多个权重文件合并,并转换成Huggingface格式的权重文件。 权重文件的合并转换操作都要求
推理前的权重合并转换 模型训练完成后,训练的产物包括模型的权重、优化器状态、loss等信息。这些内容可用于断点续训、模型评测或推理任务等。 在进行模型评测或推理任务前,需要将训练后生成的多个权重文件合并,并转换成Huggingface格式的权重文件。 权重文件的合并转换操作都要求
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
训练作业导入模块时日志出现前两条报错信息,可能原因如下: 代码如果在本地运行,需要将“project_dir”加入到PYTHONPATH或者将整个“project_dir”安装到“site-package”中才能运行。但是在ModelArts可以将“project_dir”加入到“sys.path”中解决该问题。
观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据Dump分析。本实验可在train
AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。
-user/work以外的目录,请将数据集等放到work路径下,不要放到非work路径下。 请不要将实例频繁保存镜像,建议一次将需要的安装包安装好,然后执行镜像保存,避免频繁执行镜像保存的动作,保存次数越多镜像越大,且多次保存后的镜像过大问题无法通过清理磁盘方式减少镜像的大小(Docker保存原理机制)。
工作空间 ModelArts的用户需要为不同的业务目标开发算法、管理和部署模型,此时可以创建多个工作空间,把不同应用开发过程的输出内容划分到不同工作空间中,便于管理和使用。 工作空间支持3种访问控制: PUBLIC:租户(主账号和所有子账号)内部公开访问。 PRIVATE:仅创建者和主账号可访问。
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍
Lite的DevServer。请参考本文档要求准备DevServer机器。 资源规格要求 计算规格:单机训练需要使用单机8卡,多机训练需要使用2机16卡。推理部署如果是376T规格,推荐使用单机单卡;280T规格推荐使用单机2卡。 硬盘空间:至少200GB。 Ascend资源规格: Ascend:
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
当Notebook实例不再需要时,调用删除Notebook实例接口删除实例。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目ID和名称、获取帐号名和帐号ID和获取用户名和用户ID。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST