检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常用概念 合作方、参与方: 空间成员,有权使用空间中的数据,或者将自有数据发布到空间,供其他合作方受限使用。 计算节点 部署在参与方侧,是可信智能计算与合作方侧数据的桥梁,保障数据按照合作方意愿受限使用。 计算节点是管理参与方数据的最小单位。部署计算节点时需要指定空间配置信息。在计算节点中支持配置连接器
查看履约记录 查看供数方和用数方在合约界面的履约记录,包括关于合约的创建、提交、撤回、拒绝、确认、中止、到期、作业执行、文件解密等关键事件。 前提条件 已创建合约,参考创建合约。 创建数据交换作业 用户登录进入计算节点页面。 在左侧导航树上选择“可信数据交换 > 数据合约”,打开数据合约页面
产品功能 动态空间管理 动态构建可信计算空间,实现空间内严格可控的数据使用和监管。空间是联邦计算的载体,合作方只有加入空间才能参与联邦计算。 安全的作业管理 作业时,数据使用的过程可审计、可追溯。TICS数据集成支持多方安全计算、可信联邦学习和联邦预测作业等作业方式。 多方安全计算
如何确认在跨VPC的情况下计算节点与SFS_Turbo文件系统连通性 使用场景 在建立了本端VPC与对端VPC的对等连接之后,用户如何去验证在跨VPC的情况下,本端VPC子网与SFS_Turbo文件系统连通性。 操作前提 在本端VPC与对端VPC之间已经建立了对等连接。 在本端VPC
创建连接器 连接器用来快速连接到用户名下的各类资源服务。 前提条件 计算节点处于运行中,且所在空间信息的“认证状态”为“已认证”。 建议使用者提前了解MapReduce服务(MRS Hive)集群。 “连接器类型”选择MapReduce服务(MRS Hive)时,选择的MRS集群需与当前计算节点部署
场景描述 现有企业A和企业B达成了一项数据共享合作协议,企业B允许企业A根据用户id查询企业B的数据,辅助企业A的实时分析业务。而企业A不想暴露给企业B自己查询的用户id,因为查询该用户的信息隐含着“该用户是企业A的客户”的信息,存在用户隐私泄露的风险。 企业A和企业B可以使用TICS
TICS使用流程简介 本文档是一个TICS入门教程,介绍了如何在TICS控制台完成端到端的全流程使用。 可信智能计算服务TICS( Trusted Intelligence Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算
场景描述 有效的风险控制能够消灭或减少风险事件发生的各种可能性,或减少风险事件发生时造成的损失,对于企业具有重要意义。现阶段,企业级的单方风控体系已逐步建立,在机构内数据统一共享的基础上实现了覆盖业务前、中、后各环节的智能风控。然而,单方数据风控面临存在数据不全面、风控不及时的问题
概述 欢迎使用可信智能计算服务TICS (Trusted Intelligent Computing Service)。可信智能计算服务TICS打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储
产品优势 多域协同 支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow
创建隐私求交作业 前提条件 参与计算的双方需要在其代理节点上创建好各自的数据集,并需要确保数据集含有非敏感的唯一标识字段。 创建作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 隐私求交”,打开隐私求交作业列表页面。 在隐私求交作业列表页面,单击“创建”。 图
批量隐匿查询 隐匿查询,也称隐私信息检索,是指查询方隐藏被查询对象关键词或客户id信息,数据服务方提供匹配的查询结果却无法获知具体对应哪个查询对象。数据不出门且能计算,杜绝数据缓存的可能性。 例如查询方希望查询身份证id为“张三”的人信贷公式数据,发起了一个类似于SELECT salary
创建实时预测作业 前提条件 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。 空间成员在计算节点中完成数据发布,参考发布数据。 约束限制 避免作业名重复。 必须选择一个已有的FiBiNet模型才能创建实时预测作业。 实时预测作业必须选择训练
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果
发起联邦预测 企业A单击“发起预测”按钮,选择己方和大数据厂商B的预测数据集,单击确定即可发起预测。 TICS服务会对两方的数据先进行样本对齐,并对双方共有的数据进行联邦预测,预测的结果会保存在企业A(作业发起方)的计算节点上。企业A可以通过obs服务或者登录到计算节点后台获取到对应路径的文件
概述 联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计算节点部署在线预测服务的方式
组合架构 架构说明 图1 架构图例 作业发起方通过计算节点提供的控制台页面,发起多方安全计算作业。 多方安全计算作业在TICS中进行解析和任务计划构建,并下发任务给各个数据参与方所在的计算节点。 参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS
审计日志 审计日志页面是可信智能计算服务提供的一项审计数据流动的功能。通过计算节点侧审计页面信息,用户可以清晰地获知空间中的参与方通过该计算节点运行的任务详情。同时,部署计算节点时若开启BCS功能,审计数据会同步至区块链上。 计算节点侧查看审计日志 用户登录TICS控制台。 进入TICS