检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
化技术,重新处理历史观测数据,生成高质量的气象记录。这些数据既可以覆盖全球范围,也可以针对特定区域,旨在提供完整、一致且高精度的气象数据。 再分析数据为二进制格式,具体格式要求详见表1。 表1 气象类数据集格式要求 文件内容 文件格式 文件要求 海洋气象 nc、cdf、netcd
数据获取”,单击右上角“创建原始数据集”。 在“创建原始数据集”页面,选择“文本 > 单轮问答”,选择文件格式、文件来源并添加文件,填写数据集名称及描述,单击“立即创建”。 图1 创建原始数据集 创建成功的数据集的任务状态为“成功”,单击操作列的“上线”按钮,将该数据集上线,用于后续加工操作。 选择左侧“数据工程
请检查创建数据集时使用的数据,与平台要求的文件内容格式是否一致。 content type [%s] not support, only [%s] support. 数据集中的内容不支持,请保证上传的数据格式与平台要求的一致。 get obs bucket folders error. 请检查OBS服务是否正常,是否可以访问OBS桶数据。
数据获取”,单击右上角“创建原始数据集”。 在“创建原始数据集”页面,选择“图片 > 图片+Caption”,选择文件格式、文件来源,填写数据集名称及描述,单击“立即创建”。 创建成功的数据集的任务状态为“成功”,单击操作列的“上线”按钮,将该数据集上线,用于后续标注操作。 选择左侧“数据工程 > 数据标注 >
示例如下: 去除“参考文献”以及之后的内容:\n参考文献[\s\S]* 针对pdf的内容,去除“0 引言”之前的内容,引言之前的内容与知识无关:[\s\S]{0,10000}0 引言 针对pdf的内容,去除“1.1Java简介”之前的与知识无关的内容:[\s\S]{0,10000}
在“创建加工数据集”页面,选择需要加工的视频类数据集,并设置数据集的名称和描述信息。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集 单击“下一步”进入“算子编排”页面。对于视频类数据集,可选择的加工算子及参数配置请参见表1。
数据加工”,单击界面右上角“创建加工数据集”。 图2 数据加工 在“创建加工数据集”页面,选择需要加工的文本类数据集,并设置数据集的名称和描述。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集 单击“下一步”进入“算子编排”页面。对于
在“创建加工数据集”页面,选择需要加工的图片类数据集,并设置数据集的名称和描述信息。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集 单击“下一步”进入“算子编排”页面。对于图片类数据集,可选择的加工算子及参数配置请参见表1、表2。
中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类加工算子能力清单 算子分类 算子名称 算子描述 科学计算 气象预处理 将二进制格式的气象数据文件转换成结构化json数据。 父主题: 数据集加工算子介绍
在“创建加工数据集”页面,选择需要加工的气象类数据集,并设置数据集的名称和描述信息。 选择数据集时,默认选择当前空间的数据集。如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 图3 创建加工数据集 单击“下一步”进入“算子编排”页面。对于气象类数据集,可选择的加工算子及参数配置请参见表1。
用、监管有力的制度,并加强对专项资金的监督和管理。严格控制专项资金的流向和使用范围,严禁有过度功能的行为,坚决杜绝虚假、虚报和恶意投资,建立完善的监督管理制度,加强随时的监督和核查,确保专项资金使用的规范化、严格化、透明化、便结算。”问题:在福田区社会建设专项资金的使用过程中,如
ERA5是由欧洲中期天气预报中心(ECMWF)提供的全球气候的第五代大气再分析数据集,它覆盖从1940年1月至今的时间段,提供每小时的大气、陆地和海洋气候变量的估计值。 ERA5数据下载官方指导:https://confluence.ecmwf.int/display/CKB/
> 标注管理”,单击页面右上角“创建标注任务”。 图2 标注管理 在“创建标注任务”页面选择需要标注的加工后的文本类数据集,并设置标注项。 设置标注项时,不同类型的数据文件对应的标注项也有所差异,可基于页面提示进行设置。 图3 创建标注任务 单击“下一步”设置标注人员及信息,单击“完成创建”。
让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。
幅度减少人工标注的工作量和时间成本。此外,AI预标注不仅提高了标注效率,还能减少人为错误,提高标注的一致性和准确性。标注质量的提高直接增强了训练数据的有效性,确保训练模型时能获得更高质量的学习数据,从而推动模型性能的提升。 数据评估:数据的质量直接决定了大模型的表现,因此,数据质
信息。 数据版权设置。训练模型的数据集除用户自行构建外,也可能会使用开源的数据集。数据版权功能主要用于记录和管理数据集的版权信息,确保数据的使用合法合规,并清晰地了解数据集的来源和相关的版权授权。通过填写这些信息,可以追溯数据的来源,明确数据使用的限制和许可,从而保护数据版权并避免版权纠纷。
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:
数据标注是数据工程中的关键步骤,旨在为无标签的数据集添加准确的标签,从而为模型训练提供有效的监督信号。标注数据的质量直接影响模型的训练效果和精度,因此高效、准确的标注过程至关重要。数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途。 为了
模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比
高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。 在ModelArts