检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
可验证代码示例 数据准备 数据集发布 隐私规则防护 基本计算能力验证 基于MPC算法的高安全级别计算 统计型作业的差分隐私保护 父主题: 多方安全计算场景
文档修订历史 表1 修订记录 文档版本 发布日期 修改说明 01 2022-07-13 首次发布。 02 2022-10-28 新增节点侧API参考。 03 2023-08-11 节点侧API调整至API参考手册。
纵向联邦建模场景 使用TICS多方安全计算进行联合样本分布统计 使用TICS可信联邦学习进行联邦建模 使用TICS联邦预测进行新数据离线预测 父主题: 使用场景
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
可信数据交换场景 场景描述 创建数据 申请使用数据 审批数据申请 创建合约 父主题: 使用场景
实验结果 乳腺癌数据集作业结果 父主题: 横向联邦学习场景
管理数据 数据管理概述 创建连接器 创建数据集 发布数据 数据预处理 父主题: 计算节点管理
多方安全计算作业 创建作业 执行作业 查看作业计算过程和作业报告 删除作业 审批模式作业
执行多方安全计算作业 用户登录计算节点页面。 在左侧导航树上依次选择“作业管理 > 多方安全计算”,打开多方安全计算页面。 在多方安全计算页面查找待执行的作业,单击“执行”。如果SQL中存在作业变量,需要在执行时填入实际值。 图1 执行作业 父主题: 多方安全计算作业
可信数据交换 概述 创建申请 确认申请 创建合约 签署合约 查看履约记录 查看作业计算过程和作业报告
批量预测 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 创建批量预测作业 编辑批量预测作业 执行批量预测作业 删除批量预测作业 父主题: 联邦预测作业
实时隐匿查询 创建作业 审批实时隐匿查询作业 作业授权 执行作业 删除作业 父主题: 隐匿查询
执行隐私求交作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 隐私求交”,打开隐私求交作业列表页面。 在已存在的作业项右侧,单击“执行”按钮即可启动执行该作业。 图1 执行隐私求交作业 父主题: 隐私求交
发布数据集 企业A和企业B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 以企业A为例,数据集信息如下: 隐私求交场景需要将求交的字段设置为“非敏感”的唯一标识。 父主题: 隐私求交黑名单共享场景
阶段四:基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 前提条件 完成审批防护。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal
本案例以“预测乳腺癌是良性/恶性”的场景为例。假设一部分的乳腺癌患者数据存储在xx医院,另一部分数据存储在某个其他机构,不同机构数据所包含的特征相同。 这种情况下,xx医院想申请使用其他机构的乳腺癌患者数据进行乳腺癌预测模型建模会非常困难。因此可以通过华为TICS可信智能计算平台的横向联邦功能,实
基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的全过程流
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS多方安全计算进行联合样本分布统计
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS可信联邦学习进行联邦建模
支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算;