检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
准备权重 获取对应模型的权重文件,获取链接参考表1。 权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是
PD分离部署使用说明 什么是PD分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个tok
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
PD分离部署使用说明 什么是PD分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个tok
各模型支持的最小卡数和最大序列 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及
mc2融合算子报错 Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training
在运行finetune_ds.sh 时遇到报错 在运行finetune_ds.sh 时遇到报错 pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig sta
mc2融合算子报错 Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training
PD分离部署性能调优理论基础 PD分离部署场景下,一般实例都加载相同模型。如何分配实例的初始属性,并根据实际需求动态调整实例属性。不合理的实例配比将造成Prefill实例等待空闲或Decode实例等待空闲,造成资源浪费,最终在MFU和端到端吞吐性能上产生劣化,无法发挥PD分离调度架构的优势。
PD分离性能调优工具使用说明 PD分离性能调优工具包括两个脚本工具: 性能测试脚本与数据可视化脚本。 PD分离调优时需要使用性能测试脚本分别跑出混推与PD分离的性能数据, 并使用数据可视化工具将两个场景的数据绘制在一起,进行对比分析收益。 PD混合推理性能评测 PD混合推理性能测试执行脚本如下所示:
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接 如果本地为Linux系统,见原因分析二。 原因分析一 自动安装VS Code插件ModelArts-HuaweiCloud失败。 解决方法一 方法一:检查VS Code网络是否正常。在VS
PD分离部署手动配比调优(推荐) 配比调优理论分析 PD分离部署性能对比对象为相同实例个数、实例使用相同卡数、相同SLO要求下的PD混推性能。 PD性能测评脚本与绘图工具请参考PD分离性能调优工具使用说明章节。 样例场景如下:模型qwen2.5 32B输入1024、输出512、SLO为2s
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表1。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
联网下载SimSun.ttf时可能会遇到网络问题 联网下载SimSun.ttf时肯会遇到网络问题 tonkenization_qwen.py会在cache中读取SimSun.ttf 文件,如果没有,就会联网下载,可能会遇到: SSL:CERTIFICATE_VERIFY_FAILED
联网下载SimSun.ttf时可能会遇到网络问题 联网下载SimSun.ttf时肯会遇到网络问题 tonkenization_qwen.py会在cache中读取SimSun.ttf 文件,如果没有,就会联网下载,可能会遇到: SSL:CERTIFICATE_VERIFY_FAILED
准备Notebook(可选) 本步骤为可选操作。ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户有自定义开发的需要,比如查看和编辑代码、数据预处理、权重转换等操作,可通过Note
连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决? 问题现象 原因分析 通过查看日志发现本地vscode-scp-done.flag显示成功上传,但远端未接收到。