检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练输出路径被其他作业使用 问题现象 在创建训练作业时出现如下报错:操作失败!Other running job contain train_url: /bucket-20181114/code_hxm/ 原因分析 根据报错信息判断,在创建训练作业时,同一个“训练输出路径”在被其他作业使用。
使用预置算法训练时,训练失败,报“bndbox”错误 问题现象 使用预置算法创建训练作业,训练失败,日志中出现如下报错。 KeyError: 'bndbox' 原因分析 用于训练的数据集中,使用了“非矩形框”标注。而预置使用算法不支持“非矩形框”标注的数据集。 处理方法 此问题有两种解决方法:
训练作业失败,返回错误码139 问题现象 训练作业运行失败,返回错误码139,如下图所示: [Modelarts Service Log]Training end with reeturn code: 139 INFO:root:Using MoXing-v1.17.2-c806a92f
日志提示“label_map.pbtxt cannot be found” 问题现象 使用目标检测算法训练时,训练作业日志运行出现如下报错:ERROR:root:label_map.pbtxt cannot be found. It will take a long time to
在ModelArts训练得到的模型欠拟合怎么办? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更
$i + 0` echo $dev export DEVICE_ID=$dev python train.py > train.log 2>&1 & done 其中,train.py中设置环境变量DEVICE_ID: devid = int(os.getenv('DEVICE_ID'))
ModelArts数据集新建的版本找不到怎么办? 版本列表是可以缩放的,请缩小页面后查找。 单击数据集名称,进入数据集概览页,在概览页选择“版本管理”,可对页面进行缩小。 父主题: Standard数据准备
Standard支持的AI框架 ModelArts Standard的开发环境Notebook、训练作业、模型推理(即模型管理和部署上线)支持的AI框架及其版本,请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、P
docker_ip 是 str 启动多模态openAI服务的主机ip served_port 是 str 启动多模态openAI服务的端口号 表2 请求服务json参数说明 参数 是否必须 默认值 参数类型 描述 model 是 无 Str 通过OpenAI服务API接口启动服务时,推理请求必
方式一:通过OpenAI服务API接口启动服务 在llm_inference/ascend_vllm/目录下通OpenAI服务API接口启动服务,具体操作命令如下,可以根据参数说明修改配置。 (1)非多模态 python -m vllm.entrypoints.openai.api_server
Gallery订阅”。 搜索“图像分类-ResNet_v1_50工作流”,单击“订阅”,勾选“我已同意《数据安全与隐私风险承担条款》和《华为云AI Gallery服务协议》”,单击“继续订阅”即可完成工作流的订阅。订阅过的工作流会显示“已订阅”。 运行工作流 订阅完成后,单击“
import requests import os from apig_sdk import signer if __name__ == '__main__': # Config url, ak, sk and file path. # API接口公网地址,例如"https://8e******5fe
查看训练作业事件 训练作业的(从用户可看见训练作业开始)整个生命周期中,每一个关键事件点在系统后台均有记录,用户可随时在对应训练作业的详情页面进行查看。 方便用户更清楚的了解训练作业运行过程,遇到任务异常时,更加准确的排查定位问题。当前支持的作业事件如下所示: 训练作业创建成功 训练作业创建失败报错:
构建镜像失败,因为触发了限流。请稍后重试。 Failed to build the image due to the threshold has been reached. Please try again later. 触发了限流,请稍后重试。 异常 发送构建镜像请求失败。 Failed to send
准备镜像 构建容器镜像并调试 镜像构建及调试与单机单卡相同。 具体操作,请参考线下容器镜像构建及调试。 上传镜像 请参考单机单卡训练的上传镜像章节操作。 父主题: 单机多卡
ModelArts训练作业无法解析参数,日志报错 问题现象 ModelArts训练作业无法解析参数,遇到如下报错,导致无法正常运行: error: unrecognized arguments: --data_url=xxx://xxx/xxx error: unrecognized
训练过程中无法找到so文件 问题现象 ModelArts训练作业运行时,日志中遇到如下报错,导致训练失败: libcudart.so.9.0 cannot open shared object file no such file or directory 原因分析 编译生成s
创建模型成功后,部署服务报错,如何排查代码问题 问题现象 创建模型成功后,部署服务失败,如何定位是模型代码编写有问题。 原因分析 用户自定义镜像或者通过基础镜像导入的模型时,用户自己编写了很多自定义的业务逻辑,这些逻辑有问题将会导致服务部署或者预测失败,需要能够排查出哪里有问题。
如何减小本地或ECS构建镜像的目的镜像的大小? 减小目的镜像大小的最直接的办法就是选择尽可能小且符合自己诉求的镜像,比如您需要制作一个PyTorch2.1+Cuda12.2的镜像,官方如果没有提供对应的PyTorch或者Cuda版本的镜像,优选一个没有PyTorch环境或没有安装
conv2d/weights. 通过以下方式控制需要训练的参数列表。其中,“trainable_include_patterns”为需要训练的参数列表,“trainable_exclude_patterns”为不需要训练的参数列表。 --trainable_exclude_patterns: Variables