检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备Notebook ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。
以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/m
以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/m
数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA_PATH、ORIGINAL_HF_WEIGHT。 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入数据集路径。 ORIGINAL_HF_WEIGHT:加载tokenizer与Hugging
#obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_name>/training_data" obs_model_dir= "obs://<bucket_name>/model"
输出转换后权重文件保存路径: 权重转换完成后,在/home/ma-user/work/llm_train/saved_dir_for_output/llama2-13b/saved_models/pretrain_hf/目录下查看转换后的权重文件。 用户自定义执行权重转换参数修改说明 同样以 llama2
准备Notebook ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录M
server 64bit 内核版本 5.4.0-144-generic 架构类型 x86 驱动版本 525.105.17 cuda 12.0 container-toolkit 1.13.3-1 fabricmanager 525.105.17 mlnx-ofed-linux 5.8-2.0
Started server process [2878]INFO: Waiting for application startup. INFO: Application startup complete. INFO: Uvicorn running on
创建训练作业界面无云存储名称和挂载路径排查思路 问题现象 创建训练作业界面没有云存储名称和挂载路径这两个选项。 原因分析 用户的专属资源池没有进行网络打通,或者用户没有创建过SFS。 处理方法 在专属资源池列表中,单击资源池“ID/名称”,进入详情页。单击右上角“配置NAS VPC”,检查是否开启了NAS
使用Qwen2.5-72B-1K、Qwen2.5-32B调优的Checkpoint创建模型时,权重校验失败 问题现象 使用Qwen2.5-72B-1K、Qwen2.5-32B调优的Checkpoint创建模型时,权重校验失败。 版本详情的报错信息如下: Insufficient storage
挂载。请先正常安装NPU设备和驱动,或释放被挂载的NPU。 检查containerd是否安装。 containerd -v # 检查containerd是否安装 在创建CCE集群时,会选择 containerd 作为容器引擎,并默认给机器安装。如尚未安装,说明机器操作系统安装
loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
查看日志和性能 单击作业详情页面,则可查看训练过程中的详细信息。 图1 查看训练作业 在作业详情页的日志页签,查看最后一个节点的日志,其包含“elapsed time per iteration (ms)”数据,可换算为tokens/s/p的性能数据。 吞吐量(tokens/s/p):global
utput_dir参数值路径下的trainer_log.jsonl文件 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。 吞吐量(tokens/s/p):可通过表1表格中output_dir参数值路径下的train_results.json查看性能。
#obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_name>/training_data" obs_model_dir= "obs://<bucket_name>/model"
loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/alpaca_gpt4_data.json 必须修改。训练时指定的输入数据路径。请根据实际规划修改。
查看日志和性能 单击作业详情页面,则可查看训练过程中的详细信息。 图1 查看训练作业 在作业详情页的日志页签,查看最后一个节点的日志,其包含“elapsed time per iteration (ms)”数据,可换算为tokens/s/p的性能数据。 吞吐量(tokens/s/p):global
/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: ${workdir} |── training_data