检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如:“/usr/app/”。应与boot_file一同出现。 boot_file String 算法的代码启动文件,需要在代码目录下。如:“/usr/app/boot.py”。应与code_dir一同出现。 command String 自定义镜像算法的容器启动命令。
server launch time cost: 15.443044185638428 s INFO: Started server process [2878]INFO: Waiting for application startup.
server launch time cost: 15.443044185638428 s INFO: Started server process [2878]INFO: Waiting for application startup.
=[{"epoch_num": cur_epoch_num}],mindspore1.3及以后版本会支持append_info参数,保存当前时刻的epoch值。
步骤一:创建网络 ModelArts网络是承载ModelArts资源池节点的网络连接,基于华为云的VPC进行封装,对用户仅提供网络名称以及CIDR网段的选择项。
表1 贝叶斯优化的参数说明 参数 说明 取值参考 num_samples 搜索尝试的超参组数 int,一般在10-20之间,值越大,搜索时间越长,效果越好 kind 采集函数类型 string,默认为'ucb',可能取值还有'ei'、'poi',一般不建议用户修改 kappa 采集函数
应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。
应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。
应用于训练长序列文本的模型。若训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。
app_kind 取自首个ownerReferences的kind字段。 app_id 取自首个ownerReferences的uid字段。 app_name 取自首个ownerReferences的name字段。
应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。
应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。
应用于训练长序列文本的模型。若训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。
应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。
应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。
如:“/usr/app/”。应与boot_file一同出现。 boot_file String 算法的代码启动文件,需要在代码目录下。如:“/usr/app/boot.py”。应与code_dir一同出现。 command String 自定义镜像算法的容器启动命令。
kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 进入benchmark_tools目录下,切换conda环境。
kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 进入benchmark_tools目录下,切换conda环境并安装依赖。
headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' } data = { "model": "***
kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。