检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
方式二:通过OBS Browser+将数据上传至OBS,最后在ECS中使用obsutil工具将OBS数据下载至SFS Turbo中。具体步骤如下: 在创建OBS桶创建的桶下创建文件夹用以存放数据,例如在桶standard-llama2-13b中创建文件夹training_data。 利用OBS B
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析
--accuracy 指定模型精度,只支持fp16和fp32。 string 否 fp16 - Python API 导入包并创建tailor对象。 from tailor.tailor import Tailor onnx_model_path = "./resnet50-v2-7
md”文件里。 更新后的“README.md”文件自动存放在数据集详情页的“文件版本”页签或者是模型详情页的“模型文件”页签。 创建模型资产 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 单击左上方“创建资产”,选择“模型”。 在“创建模型”弹窗中配置参数,单击“创建”。
# 模型名称,根据实际训练模型创建,训练完成权重文件及日志目录 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录DevServer。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩
cluster_id 否 String MRS集群ID。可登录MRS控制台查看。 cluster_mode 否 String MRS集群运行模式。可选值如下: 0:普通集群 1:安全集群 cluster_name 否 String MRS集群名称。可登录MRS控制台查看。 database_name
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的hanler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的hanler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的hanler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析
用户项目ID,获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 admin_pass 否 String 用于登录服务器密码。注意admin_pass和key_pair_name必须二选一。密码规则: 长度为8至26个 至少包含大写字母、小写字母、数字及特殊符号(
zip在本地解压缩后,将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建
任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。
zip在本地解压缩后,将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建
tpe_search:TPE算法 anneal_search:模拟退火算法(Anneal) 提交创建算法完成后即可执行下一步,创建训练作业。 创建训练作业 登录ModelArts控制台,参考创建生产训练作业操作指导,创建训练作业。用户需关注以下操作才能开启超参搜索。 当您选择支持超参搜索的算法,需
# 模型名称,根据实际训练模型创建,训练完成权重文件及日志目录 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录DevServer。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩
Cluster资源池进行扩缩容。 Lite Cluster资源池不能缩容到0。 包年/包月的资源处仅支持扩容操作。 扩缩容Lite Cluster资源池 登录ModelArts管理控制台,在左侧菜单栏中选择“AI专属资源池 > 弹性集群 Cluster”,在“弹性集群”页面,选择“Lite资源池”页签,查看资源池列表。
script装饰器,torch_npu能采到数据,而GPU上则不行的原因为:@torch.jit.script装饰器会将装饰函数作为ScriptFunction对象返回,不会产生dump数据。而目前该装饰器在torch_npu下不生效,NPU会按照普通函数执行,因此能够采集到数据。从精度对比角度考虑,先删除@torch
类型type、属性properties,必需属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured