检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr
Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr
rts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。
Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink
rts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install.sh
训练的权重转换说明 以llama2-13b举例,使用训练作业运行obs_pipeline.sh脚本后,脚本自动执行权重转换,并检查是否已经完成权重转换的过程。 如果已完成权重转换,则直接执行训练任务。如果未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf
表3 部署本地服务predictor返回参数说明 参数 是否必选 参数类型 描述 predictor 是 Predictor对象 Predictor对象,其属性只包括推理服务测试。 父主题: 服务管理
LLamaFactory PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS适配PyTorch NPU训练指导 LLM开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导 LLM开源大模型基于Lite Cluster适配PyTorch
rts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install.sh
将所需的数据上传至此OBS桶中。 检查OBS的路径是否正确,是否写为了“obs://xxx”。可使用如下方式判断OBS路径是否存在。 mox.file.exists('obs://bucket_name/sub_dir_0/sub_dir_1') 路径存在,请执行4。 路径不存在,请在更换为一个可用的OBS路径。
B,如果需要复制数据,可参考如下步骤操作: 将Notebook A的数据上传至OBS; 下载OBS中的数据至Notebook B。 文件的上传下载详细操作请参考如何在ModelArts的Notebook中上传下载OBS文件?。 父主题: Standard Notebook
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练tokenizer文件说明 在训练开始前,有些模型需要对模型的tokenizer文件,或者模型配置配置文件进行修改,具体的修改如下: Qwen-VL 修改文件modeling_qwen.py: # 将36 37 两行注释部分 36 SUPPORT_BF16 = SUPPORT_CUDA
训练tokenizer文件说明 在训练开始前,有些模型需要对模型的tokenizer文件,或者模型的配置文件进行修改,具体的修改如下: Qwen-VL 修改文件modeling_qwen.py: # 将36 37 两行注释部分 36 SUPPORT_BF16 = SUPPORT_CUDA
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,若直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh 文件,来安装依赖以及下载完整代码。
训练的权重转换说明 以llama2-13b举例,使用训练作业运行0_pl_pretrain_13b.sh脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf