检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
描述 total_count Integer 不分页的情况下符合查询条件的总服务数量。 count Integer 当前查询结果的服务数量,不设置offset、limit查询参数时,count与total相同。 services Array of ListServices objects
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
的流量权重,仅当infer_type为real-time时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 specification
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite DevServer上的不同训练阶段方案,包括指令监督微调、DPO偏好训练、RM奖励模型训练、PPO强化训练方案。 DPO(Direct
h", "dataset_id" : "gfghHSokody6AJigS5A", "import_path" : "obs://test-obs/daoLu_images/animals/", "import_type" : 0, "total_sample_count"
修改/etc/docker/daemon.json配置文件default-shm-size字段 方式二: docker run 命令中使用 --shm-size 参数来设置单个容器的共享内存大小 NPU:RoCE网卡down RoCELinkStatusDown 重要 NPU 卡 %d RoCE Link 状态Down
String 数据集输出位置,用于存放输出的标注信息等文件。此位置为OBS路径,格式为“/桶名称/文件路径”。例如:“/obs-bucket”。 work_path_type Integer 数据集输出路径类型。默认值为0,表示OBS桶。 workforce_descriptor WorkforceDescriptor
"dataset_id" : "gfghHSokody6AJigS5A", "import_path" : "obs://test-obs/daoLu_images/animals/", "import_type" : 0, "total_sample_count"
dataset_id="68ZXdK6CZwgvUICOOdC") 参数说明 表1 请求参数 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法请参见Session鉴权。 dataset_id 是 String 数据集的ID。 父主题: 数据集管理
240606。 ${base_image}为基础镜像地址。 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本./AscendCloud/A
处理方法 公共资源池容器Docker size的大小最大支持50G,专属资源池Docker size的大小最大支持50G。 如果使用的是OBS导入或者训练导入,则包含基础镜像、模型文件、代码、数据文件和下载安装软件包的大小总和。 如果使用的是自定义镜像导入,则包含解压后镜像和镜像下载文件的大小总和。
local path and OBS ma-cli image build .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile --target ./build.tar --obs_path obs://bucket/object
AI框架,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。 本文档提供的调测代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 本文档提供的调测代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,只需要修改个别的参数即可。
2核 8GB", "sold_out" : false, "storages" : [ "EVS", "OBSFS", "EFS", "OBS" ], "vcpus" : 2 } ], "pages" : 1, "size" : 1, "total"
发布后可获得数据集A和数据集B的Manifest文件。可通过数据集的“数据集输出位置”获得此文件。 创建一个空数据集C,即无任何输出,其输入位置选择一个空的OBS文件夹。 在数据集C中,执行导入数据操作,将数据集A和数据集B的Manifest文件导入。 导入完成后,即将数据集A和数据集B的数据分别都
ArgumentParser() parser.add_argument('--data_url', type=str, default=None, help='obs path of dataset') args, unparsed = parser.parse_known_args() 父主题: 云上迁移适配故障
on_name String 导出数据集版本的名称。 export_dest String 数据集导出类型。可选值如下: DIR:导出到OBS(默认值) NEW_DATASET:导出到新数据集 export_new_dataset_name String 导出新数据集的名称。 e
行模型的性能。 AKG的配置也是在模型转换阶段进行配置(即执行converter_lite命令时),通过指定对应的配置文件akg.cfg,设置对应的akg优化级别,并且在模型转换时参考样例进行对应的配置。 # akg.cfg [graph_kernel_param] opt_level=2