检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
yaml相对或绝对路径,根据自己要求执行 <model_name>:训练模型名,如qwen2-7b <exp_name>:实验名称:具体可以设置的值参考<cfgs_yaml_file> --master_addr <master_addr>:主master节点IP,一般选rank0为主master。
节点池名称。比如:nodePool-1。 taints Array of Taint objects 支持给创建出来的节点加taints来设置反亲和性,非特权池不能指定。 labels Map<String,String> k8s标签,格式为key/value键值对。 tags Array
0.5.3 打印如下信息,表示构建镜像成功。 图3 成功构建镜像 注:若构建镜像时报错pip超时,可在Dockerfile中添加如下命令设置pip源 RUN pip config set global.index-url https://xxx/simple RUN pip config
针对ModelArts中的数据集,在创建数据集时,需指定“数据集输入位置”和“数据集输出位置”。两个参数填写的均是OBS路径。 “数据集输入位置”即原始数据存储的OBS路径。 “数据集输出位置”,指在ModelArts完成数据标注后,执行数据集发布操作后,在此指定路径下,按数据集版
Step2 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。
订阅的主题。 entity String 订阅的主题。 events Array of strings 订阅的事件。 请求示例 创建消息订阅。设置订阅的主题为“fengbin26”,订阅的主题为“238947895793875835893490”,订阅的事件为“[ "*:failed
pt.conf.d/10periodic”文件: vi /etc/apt/apt.conf.d/10periodic 修改文件以将所有选项设置为“0”: APT::Periodic::Update-Package-Lists "0"; APT::Periodic::Downloa
使用时解密,确保安全; # 本示例以app_key和app_secret保存在环境变量中来实现身份验证为例,运行本示例前请先在本地环境中设置环境变量HUAWEICLOUD_APP_KEY和HUAWEICLOUD_APP_SECRET。 app_key = os.envi
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
在“全部”、“未标注”或“已标注”页签下,您可以在筛选条件区域,添加筛选条件,快速过滤出您想要查看的数据。 支持的筛选条件如下所示,您可以设置一个或多个选项进行筛选。 难例集:难例或非难例。 标签:您可以选择全部标签,或者基于您指定的标签,选中其中一个或多个。 样本创建时间:1个
Step2 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。
size参数,指定-1时为per-channel权重量化,W4A16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-ha
标注页面,数据标注的图片来源有两种,通过本地添加图片和同步OBS中的图片数据。 图3 添加本地图片 图4 同步OBS图片数据 添加数据:您可以将本地图片快速添加到ModelArts,同时自动上传至创建项目时所选择的OBS路径中。单击“添加数据”,根据弹出的对话框的引导,输入正确的数据并添加。
site-packages\pip (python *.*) 在Windows环境中,如果提示“不是内部或外部命令”,请您在“环境变量”中设置“Path”,增加Python和pip的安装路径,具体步骤如下。pip的安装路径一般为Python所在目录的Scripts文件夹。 快捷键
|──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
transformers sentencepiece #安装量化工具依赖 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py 详细说明可以参考vLLM官网:https://docs
py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py --model-path /home/ma-user/llama-2-7b/
py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py --model-path /home/ma-user/llama-2-7b/
推理工具 |——AscendCloud-OPP #依赖算子包 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
_6 Step6 监督微调 bash finetune_ds.sh 修改模型权重路径${model_path},保持其余参数一致。脚本参数设置如下: #!/bin/bash GPUS_PER_NODE=8 NNODES=1 NODE_RANK=0 MASTER_ADDR=localhost