检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Hive结果表 功能描述 本节介绍利用Flink写Hive的表。Hive结果表的定义,以及创建结果表时使用的参数和示例代码。详情可参考:Apache Flink Hive Read & Write Flink 支持在 BATCH 和 STREAMING 模式下从Hive写入数据。
Hudi数据表Compaction规范 mor表更新数据以行存log的形式写入,log读取时需要按主键合并,并且是行存的,导致log读取效率比parquet低很多。为了解决log读取的性能问题,Hudi通过compaction将log压缩成parquet文件,大幅提升读取性能。 规则
ClickHouse结果表 功能描述 DLI将Flink作业数据输出到ClickHouse中。 ClickHouse是面向联机分析处理的列式数据库,支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常优异,比其他分析型数据库速度快一个数量级。详细请参考ClickHouse
Redis结果表 功能描述 DLI将Flink作业的输出数据输出到Redis中。Redis是一种支持Key-Value等多种数据结构的存储系统。可用于缓存、事件发布或订阅、高速队列等场景,提供字符串、哈希、列表、队列、集合结构直接存取,基于内存,可持久化。有关Redis的详细信息,
查询所有队列 功能介绍 该API用于列出该project下所有的队列。 调试 您可以在API Explorer中调试该接口。 URI URI格式: GET/v1.0/{project_id}/queues 参数说明 表1 URI参数 参数名称 是否必选 参数类型 说明 project_id
创建Flink OpenSource SQL作业 本章节介绍如何新建Flink OpenSource SQL作业。 DLI Flink OpenSource SQL类型作业完全兼容社区Flink版本,并在社区connector基础之上,新增了Redis、DWS(GaussDB)数据源类型
创建Flink Jar作业 Flink Jar作业是基于Flink能力进行二次开发的场景,即构建自定义应用Jar包并提交到DLI的队列运行。 Flink Jar作业场景需要用户自行编写并构建应用Jar包,适用于对流计算处理复杂度要求较高的用户场景,且用户可以熟练掌握Flink二次开发能力
ClickHouse结果表 功能描述 DLI支持将Flink作业数据输出到ClickHouse数据库中。ClickHouse是面向联机分析处理的列式数据库,支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常优异,比其他分析型数据库速度快一个数量级。详细请参考ClickHouse
功能总览 功能总览 全部 数据湖探索 权限管理 弹性资源池 DLI元数据 DLI SQL作业 DLI Spark作业 DLI Flink作业 跨源连接 DLI自定义委托 自定义镜像 OBS 2.0支持 数据湖探索 数据湖探索(Data Lake Insight,以下简称DLI)是完全兼容
配置DLI云服务委托权限 使用DLI服务前请先配置DLI云服务权限。 本节操作适用于以下场景: 首次使用DLI服务,请参考本节操作按需配置DLI云服务委托权限。 使用DLI的过程中需要与其他云服务协同工作,因此需要您将部分服务的操作权限委托给DLI服务,确保DLI具备基本使用的权限
Postgres CDC源表 功能描述 Postgres的CDC源表,即Postgres的流式源表,用于依次读取PostgreSQL数据库全量快照数据和变更数据,保证不多读一条也不少读一条数据。即使发生故障,也能采用Exactly Once方式处理。 前提条件 PostgreSQL
Upsert Kafka源表 功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 作为 source,upsert-kafka 连接器生产changelog
Upsert Kafka结果表 功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。DLI将Flink作业的输出数据以upsert的模式输出到Kafka中。
MySQL CDC源表 功能描述 MySQL的CDC源表,即MySQL的流式源表,会先读取数据库的历史全量数据,并平滑切换到Binlog读取上,保证数据的完整读取。 前提条件 MySQL CDC要求MySQL版本为5.7或8.0.x。 该场景作业需要DLI与MySQL建立增强型跨源连接
Hive源表 简介 Apache Hive 已经成为了数据仓库生态系统中的核心。 它不仅仅是一个用于大数据分析和ETL场景的SQL引擎,同样它也是一个数据管理平台,可用于发现,定义,和演化数据。 Flink与Hive的集成包含两个层面,一是利用了Hive的MetaStore作为持久化的
ClickHouse 功能描述 DLI支持将Flink作业数据输出到ClickHouse数据库中,表类型仅支持结果表。 ClickHouse是面向联机分析处理的列式数据库,支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常优异,比其他分析型数据库速度快一个数量级。
Kafka结果表 功能描述 DLI通过Kafka结果表将Flink作业的输出数据输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件
Upsert Kafka 功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。Upsert Kafka 连接器支持以upsert方式从Kafka topic
Redis结果表 功能描述 DLI将Flink作业的输出数据输出到Redis中。Redis是一种支持Key-Value等多种数据结构的存储系统。可用于缓存、事件发布或订阅、高速队列等场景,提供字符串、哈希、列表、队列、集合结构直接存取,基于内存,可持久化。有关Redis的详细信息,
MySql CDC 功能描述 MySQL的CDC源表,即MySQL的流式源表,会先读取数据库的历史全量数据,并平滑切换到Binlog读取上,保证数据的完整读取。 表1 支持类别 类别 详情 支持表类型 源表 前提条件 MySQL CDC要求MySQL版本为5.6,5.7或8.0.x