检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
PyTorch NPU训练指导(6.3.908) LLM开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.908) LLM开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.908) 支持如下模型适配PyTorch-NPU的推理。
专属资源池的费用请参考专属资源池计费项。 - - 存储资源 对象存储OBS 用于存储模型训练的输入和输出数据。 具体费用可参见对象存储价格详情。 注意: 存储到OBS中的数据需在OBS控制台进行手动删除。如果未删除,则会按照OBS的计费规则进行持续计费。 按需计费 包年/包月 创建桶不
当提示空间不足时,推荐使用EVS类型的Notebook实例。 参考如何在Notebook中上传下载OBS文件?操作指导,针对原有的Notebook,首先将代码和数据上传至OBS桶中。然后创建一个EVS类型的Notebook,将此OBS中的文件下载至Notebook本地(指新建的EVS类型Notebook)。
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
在预置服务列表,选择所需的服务,单击操作列的“更多 > 部署为我的服务”,跳转到“创建模型”页面。 在创建模型页面,完成参数配置,创建我的模型。操作指导请参见在MaaS中创建模型。 当模型创建成功后,需要部署成模型服务,操作指导请参见使用MaaS部署模型服务。 模型服务部署成功后,即可继续使用。
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的 llm_train/AscendSpeed
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
”。在弹出的“导出”对话框中,填写相关信息,然后单击“确定”,开始执行导出操作。 “数据来源”:选择新数据集。 “名称”:新数据集名称。 “保存路径”:表示新数据集的输入路径,即当前数据导出后存储的OBS路径。 “输出路径”:表示新数据集的输出路径,即新数据集在完成标注后输出的路
在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结
批量创建信息。 表7 PoolNodeAz 参数 参数类型 描述 az String 可用区名称。 count Integer 指定可用区扩容时,指定可用区的节点数。 表8 Taint 参数 参数类型 描述 key String 键。 value String 值。 effect
ModelArts支持通过导入数据集的操作,导入更多数据。本地标注的数据,当前支持从OBS目录导入或从Manifest文件导入两种方式。导入之后您还可以在ModelArts数据管理模块中对数据进行重新标注或修改标注情况。 从OBS目录导入或从Manifest详细操作指导和规范说明请参见导入数据。
[worker-0] 训练任务开始运行 [worker-0] 训练任务运行结束,退出码 [worker-0] 训练输入上传中 [worker-0] [耗时: 秒] 训练输出(参数名称:)上传完成 训练运行到结束的过程中,关键事件支持手动/自动刷新。 查看操作 在ModelArts管理控制台的左侧导航栏中选择“模型训练
在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结
当数据集中的所有数据已完成标注,即“未标注”数据为空时,创建的团队标注任务,因为没有数据需要标注,不会给团队成员发送标注邮件。在发起团队标注任务时,请确保数据集中存在“未标注”数据。 只有当创建团队标注任务时,标注人员才会收到邮件。创建标注团队及添加标注团队的成员并不会发送邮件。
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
该数据集是否存在正在运行(包括初始化)的任务。可选值如下: true:数据集存在正在运行的任务 false:数据集不存在正在运行的任务 exist_workforce_task Boolean 数据集是否含团队标注任务。可选值如下: true:数据集包含团队标注任务 false:数据集不包含团队标注任务 feature_supports
AI识别可以单独针对一个标签识别吗? 标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: 一般性问题
当数据集存在较多数据文件(即海量小文件),数据存储在OBS中,训练过程需反复从OBS中读取文件,导致训练过程一直在等待文件读取,效率低。 解决方法 建议将海量小文件,在本地压缩打包。例如打包成.zip格式。 将此压缩后的文件上传至OBS。 训练时,可直接从OBS下载此压缩文件至/cache目录。此操作仅需执行一次,无
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。