检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 文本补全:提供单轮文本能力,常用于文本生成、文本摘要、闭卷问答等任务。 多轮对话:提供多轮文本能力,常用于多轮对话、聊天任务。 图1 服务管理 图2 申请开通服务 您可按照需要选择是否开启内容审核。
低功耗,并提高计算速度。 模型经过量化压缩后,不支持评估操作,但可以进行部署操作。 创建模型压缩任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型压缩”。 单击界面右上角“创建压缩任务”,进入创建压缩任务页面。 图1 模型压缩 选择需要进行压缩的模型执行模型压
微调的目的是为了提升模型在某个特定任务或领域的表现。在大多数场景下,通过Prompt工程,通用模型也能给出比较满意的回答。但如果您的场景涉及以下几种情况,则建议采用微调的手段来解决: 目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数据,如果目标任务本身属于某个领域(如
模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:如果微调数据很多,从客观上来说越多的
在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 图1 服务管理 在“概览 > 服务列表”中选择需要调用的模型,并单击操作列的“调用路径”。 图2 服务概览页面 在弹窗中可获取对应模型的API请求地址。其中,路径选中部分即为模型的部署ID(deployment_id)。
大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模型。此类大模型因具备更强的泛化能力
很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。
16:00的A01已预定成功 - 步骤3 答复:"已为您预定 A01会议室,时间为2024年5月7日下午2点到4点。 " 用户: 再定一个明天8点到9点的会议室 助手: 已为您预定 A01会议室,时间为2024年5月8日早上8点到9点。 - 步骤1: 思考:好的,我需要
训练,数据集创建、清洗完成后需要执行“发布”操作才可以将该数据集用于后续的任务中。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,在“我的数据集”页签找到未发布的数据集,单击操作列“版本发布”执行发布数据集操作。 对不再使用的数据集可以单击“版本收回”撤销当前版本。
具备对话问答能力。 功能模型:在基模型的基础上进行微调,以适应特定任务。功能模型具备对话问答能力,并经过特定场景的优化,能够更好地处理文案生成、阅读理解和代码生成等任务。 功能模型无需额外训练即可直接用于客户任务,而基模型则需要经过微调训练才能应用。NLP大模型不仅支持预训练和微
件的订购操作后,需要开通大模型服务,才可以调用模型,实现与模型对话问答。 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 文本补全:提供单轮文本能力,常用于文本生成、文本摘要、闭卷问答等任务。 多轮
Agent助手 应用介绍 通过模型对复杂任务的自动拆解与外部工具调用执行能力,通过与用户多轮对话,实现会议室预订场景。 环境准备 Java 1.8。 参考安装章节,完成基础环境准备。 盘古大语言模型。 开发实现 创建配置文件llm.properties, 正确配置iam、pangu配置项。信息收集请参考准备工作。
提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、部署、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 支持区域: 西南-贵阳一 开发盘古NLP大模型 开发盘古科学计算大模型 压缩盘古大模型 部署盘古大模型 调用盘古大模型
在创建数据集页面,单击“前往OBS”,进入OBS服务页面。 图3 前往OBS 在OBS控制台页面,单击界面右上角“创建桶”。 图4 OBS页面 创建OBS桶时,桶区域需要与盘古大模型区域保持一致。其余配置参数可以使用默认值,详细OBS桶参数说明请参见OBS用户指南。 图5 创建OBS桶 参数填选
法等。 零样本 对于无样本的任务,可以采用让模型分步思考的方法来分解复杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性
量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为JSON格式输出,以供下游操作,从而满足该场景下客户需求。 金融场景下,NL2JSON能力可以有效消除用户语义
补预设 当任务存在多个情境时,编写提示词时需要考虑全面,需要做好各种情境的预设,告知模型对应策略,可以有效防止模型误回答以及编造输出。 父主题: 常用方法论
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确且更具针对性的输出,从而提高模型在特定任务上的性能。在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造,如果提示词模板满足不了使用需求,可再单独创建。 提示词模板可以在平台“应用开发
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出,提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词的统一管理。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
打基础 先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可