检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ObsStorageDto objects 输入数据的OBS信息。 表5 ObsStorageDto 参数 是否必选 参数类型 描述 bucket 是 String 输入数据的OBS桶名称。 path 是 String 初始场数据的存放路径。 表6 TaskOutputDto 参数
拟合度 拟合度是一种衡量模型对数据拟合程度的指标。数值范围为0到1,数值越接近1,表示模型对数据的拟合程度越好。 均方根误差 均方根误差是预测值与真实值之间差异的平方和的均值的平方根。它用于衡量模型预测值与实际值之间的偏差,数值越小,表明模型预测的精度越高。 平均绝对误差 平均绝
插件配置,对应查询需要运行时传值的参数。 响应参数 流式(Header中的stream参数为true) 状态码: 200 表5 流式输出的数据单元 参数 参数类型 描述 data String stream=true时,执行工作流的消息以流式形式返回。生成的内容以增量的方式逐步发送回来,每个
有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户): 平台提供了Prompt提示词工程和插件自定义等功能,帮助用户在无需编写代码的情况下,
用于配置大模型的输出多样性。 包含取值: 精确的:模型的输出内容严格遵循指令要求,可能会反复讨论某个主题,或频繁出现相同词汇。 平衡的:平衡模型输出的随机性和准确性。 创意性的:模型输出内容更具多样性和创新性,某些场景下可能会偏离主旨。 自定义:自定义大模型输出的温度和核采样值,生成符合预期的输出。
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。 获取训练日志 单
着深远的影响。它是重要的水资源,提供了大量的饮用水和灌溉水。同时,长江也是中国重要的内河航道,对于货物运输和经济发展具有重要作用。长江中的鱼类种类繁多,是中国淡水渔业的重要基地之一。长江中的典型鱼类包括:1. **中华鲟**:这是一种生活在长江中上游的大型鱼类,以其巨大的体型和古
用户问题,作为运行Agent的输入。 响应参数 流式(Header中的stream参数为true) 状态码: 200 表4 流式输出的数据单元 参数 参数类型 描述 data String stream=true时,执行Agent的消息以流式形式返回。 生成的内容以增量的方式逐步发送回来,
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,可进行如下操作: 编辑。单击操作列的“编辑”,可以修改模型的checkpoints、训练参数、训练数据以及基本信息等。 启动。单击操作列的“启动”,再单击弹窗的“确定”,可以启动训练任务。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,可进行如下操作: 编辑。单击操作列的“编辑”,可以修改模型的checkpoints、训练参数、训练数据以及基本信息等。 启动。单击操作列的“启动”,再单击弹窗的“确定”,可以启动训练任务。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,可进行如下操作: 编辑。单击操作列的“编辑”,可以修改模型的checkpoints、训练参数、训练数据以及基本信息等。 启动。单击操作列的“启动”,再单击弹窗的“确定”,可以启动训练任务。
编辑。单击操作列的“编辑”,可以修改模型的checkpoints、训练参数、训练数据以及基本信息等。 启动。单击操作列的“启动”,再单击弹窗的“确定”,可以启动训练任务。 克隆。单击操作列的“更多 > 克隆”,可以复制当前训练任务。 重试。单击操作列的“更多 > 重试”,可以编辑运行失败的节点,重试该节点的训练。 删除。单击操作列的“更多
言模型的安全性,还可以赋能大语言模型,如借助专业领域知识和外部工具来增强大语言模型的能力。 提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的指令或问题等信息,也可以包含其他种类的信息,
果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并比是指模型在预测多个类别时,对每个类别的交并比进行加权平均后得到的值,权重是每个类别在数据集中出
在Agent开发平台中,插件是大模型能力的重要扩展。通过模块化方式,插件能够为大模型提供更多专业技能和复杂任务处理能力,使其在多样化的实际场景中更加高效地满足用户需求。 通过插件接入,用户可以为应用赋予大模型本身不具备的能力。插件提供丰富的外部服务接口,当任务执行时,模型会根据提示词感知适用的插件,并自动调
来了巨大的挑战。盘古NLP大模型为程序员提供了强大的代码助手,显著提升了研发效率。 盘古大模型能够根据用户给定的题目,快速生成高质量的代码,支持Java、Python、Go等多种编程语言。它不仅能够提供完整的代码实现,还能够根据用户的需求,进行代码补全和不同编程语言之间的改写转化
提示词工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例,以便简
计费模式 包年包月计费模式。 实例数 设置部署模型时所需的实例数。 订阅提醒 订阅提醒 该功能开启后,系统将在任务状态更新时,通过短信或邮件将提醒发送给用户。 基本信息 服务名称 设置部署任务的名称。 描述(选填) 设置部署任务的描述。 参数填写完成后,单击“立即部署”。 父主题: 部署科学计算大模型
间差距的指标。该值越小,表示模型在表面(海表)变量的预测精度越高。 RMSE 均方根误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的平方误差的平均值的平方根。该值越小,代表模型性能越好。 MAE 平均绝对误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的绝对误差的平均值。该值越小,代表模型性能越好。