检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
优先级:根据优先级和百分比计算多个召回候选集融合。优先级高的推荐结果将确保在优先级低的之前。P1优先级最高,P1优先级如果没有用户对应的推荐物品,由配置的低优先级补充,以此类推。优先级相同的推荐候选集,根据百分占比确认召回策略推荐数量,同优先级下的数据占比之和需要等于100%。 权重:根据权重加
在使用RES之前,首先您需要创建一个数据源,后续的操作都是基于您创建的数据源进行的。 创建离线数据源 上传实时数据(可选) RES通过SDK上传实时数据,进行数据计算和处理,更新用户的相关数据。 上传实时数据 数据质量管理 数据质量管理操作可以将数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。 数据质量管理
创建离线数据源 在使用RES之前,首先您需要创建一个数据源,后续的操作都是基于您创建的数据源进行的。 创建离线数据源 上传实时数据(可选) RES通过SDK上传实时数据,进行数据计算和处理,更新用户的相关数据。 上传实时数据 数据质量管理 数据质量管理操作可以将数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。
son数据,即内部通用格式。 默认选择初始格式 时间选择 时间选择包括数据时间和行为时间跨度。 数据时间:用于匹配在起始时间和终止时间内的行为数据。 行为时间跨度:指定历史行为时间段,选取数据中最靠后的时间往前N天的行为数据计算用户偏好。建议至少设置30天。 默认选择数据时间的当月所有数据
推荐系统在需要使用CloudTable集群进行数据存储,需开启公共终端节点之后推荐才能正常使用CloudTable集群。 开启公共终端节点 上传数据 准备离线数据源 需要您准备包含用户类数据,物品类数据,行为数据以及推荐候选列表的离线数据源用于推荐系统的离线计算。 离线数据源 准备实时日志数据 RES根据实时
table的RS单元数量提升性能。 数据源 初始格式 选择提前已经存储在OBS上的如下数据源: 用户属性表 物品属性表 用户操作行为表 如上数据表的数据格式规范请参见离线数据源。 在对应表的“数据源”列中,单击选择数据的OBS存储路径。 在对应表的“数据格式”列中,数据格式可选:csv/json。
用户操作行为表:初始数据中的用户操作行为表。 “通用格式” 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 数据时间范围 被统计数据的起始时间和终止时间。
用户操作行为表USER_BEHAVIOR 通用格式GENERAL_FORMAT 数据格式请参见推荐系统离线数据源。 data_source_url 是 String 数据源路径,最大长度1000字符。 data_format 是 String 数据格式,可选值:csv、parquet、json、orc。
单击选择特征工程排序样本预处理生成的训练数据所在的OBS路径。 即特征工程“排序样本预处理”结果保存路径下具体的训练文件路径。 测试数据的obs路径 单击选择特征工程排序样本预处理生成的测试数据所在的OBS路径。 即特征工程“排序样本预处理”结果保存路径下具体的测试文件路径。 特征值数量统计文件
本文介绍了推荐系统RES各特性版本的功能发布和对应的文档动态,新特性将在各个区域(Region)陆续发布,欢迎体验。 2020年9月 序号 功能名称 功能描述 阶段 相关文档 1 支持自定义行为类型 离线数据的行为类型支持自定义行为类型。 商用 准备离线数据源 数据结构 2020年6月 序号
据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 热门推荐主要应用于当前用户浏览最多的物品内容,如实时搜索量前几的新闻或者物品。
nearline Nearline object 近线数据源。 表6 Offline 参数 参数类型 描述 user_url String 用户数据url。 item_url String 物品数据url。 behavior_url String 行为数据url。 表7 Nearline 参数 参数类型
训练结果保存根路径,训练完成后,会将模型和日志文件保存在该路径下。不包含中文的文件夹。 training_data_path 是 String 训练数据的OBS路径。 test_data_path 是 String 测试数据的OBS路径。 algorithm_type 是 String 算法
nearline Nearline object 近线数据源。 表7 Offline 参数 参数类型 描述 user_url String 用户数据url。 item_url String 物品数据url。 behavior_url String 行为数据url。 表8 Nearline 参数 参数类型
platform_parameter 是 JSON 请参见表4,平台参数。 computing_resource 否 String 指定DLI运行任务的资源规格。 config_load_path 是 String 读取配置源路径。 表4 platform_parameter参数说明 参数名称
买了又买等推荐场景,但各个子场景的运营规则均不一致。 RES提供一站式电商推荐解决方案,在一套数据源下,支持多种电商推荐场景,提供面向电商推荐场景的多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。
请参见表4,平台参数。 computing_resource 否 String 指定DLI运行任务的资源规格。 config_load_path 是 String 所选配置生成的文件在OBS上的存储路径。 表4 platform_parameter参数说明 参数名称 是否必选 参数类型
fields_feature_size_path 是 String 该文件标识了每一个域下的特征数量,排序数据处理接口会生成这个文件,文件路径为用户在排序数据预处理中输入的结果保存路径参数表示的路径的“fields_feature_size”目录下,文件名称为“part-00000”,需要用户提供文件完整路径。
datasource_id 是 String 数据源id,字母、数字、下划线、减号组合32位。 ds_config 是 ds_config object 数据源配置。 scene_name 是 String 场景名称,1-64位的字母、数字、下划线、中划线组合。 最小长度:1 最大长度:64
customize,自定义推荐 datasource_id 是 String 数据源id。 ds_config 是 ds_config object 数据源配置。 scene_name 是 String 场景名称,1-64位的字母、数字、下划线、中划线组合。 最小长度:1 最大长度:64 specs_config