检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
保证图片质量:不能有损坏的图片。 目前支持的格式包括JPG、JPEG、PNG、BMP。 训练数据集 本样例训练数据集使用未标注数据。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有商品分类的图片,即覆盖所有标签的图片。 每个分类标签
ModelArts Pro的应用场景和用户群体 ModelArts Pro基于华为云的先进算法和快速训练能力,提供预置工作流和模型。用户可以使用ModelArts Pro套件中特定行业场景的预置行业工作流,满足快速定制的需求,快速进行应用开发。 当前ModelArts Pro开放的预置套件有文
在商品识别场景下,如果上传的数据含有未标注数据,您需要创建SKU,即商品各类单品的图片,方便后续针对数据集中的数据进行自动标注。 前提条件 新建训练数据需要获取访问OBS权限,在未进行委托授权之前,无法使用此功能。您需要提前获得OBS授权,详情请见配置访问授权。 需要提前准备好SKU数据,即商品各
在“数据选择”页面,单击“新建训练数据集”,右侧弹出“新建数据集”页面。 根据数据存储位置和数据标注情况,按表1填写数据集基本信息,然后单击“确定”。 图2 新建数据集 表1 新建训练数据集参数说明 参数 说明 数据集名称 待新建的数据集名称。 描述 数据集简要描述。 数据集状态 按上传的数据是否标注分
HiLens为端云协同AI应用开发平台,提供简单易用的开发框架、开箱即用的开发环境、丰富的AI技能市场和云上管理平台,帮助用户高效开发多模态AI技能,并将其快速部署到端侧计算设备。 HiLens套件提供可训练技能模板开发技能,无需代码,只需自主上传训练数据,快速训练高精度算法模型,并且一键部署至设备。
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型交并比和误差变化。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并已执行完“数据标注”步骤,详情请见标注数据。 训练模型 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”
准备工作 注册华为帐号,开通华为云,并完成套件申请、访问授权配置等准备工作,详情请见准备工作。 步骤1:准备数据 在本地准备好用于制作模板的图片、用于训练多模板分类器的训练集、用于评估模板的图片,图片要求如下: 只支持PNG、JPG、JPEG、BMP、TIFF格式的图片。 图像各
模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“热轧钢板表面缺陷检测工作流”
模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过
新建可训练技能 本章节介绍使用可训练技能模板新建技能。使用可训练技能模板新建技能,可自主上传数据训练模型,并快速创建技能,一键部署至端侧设备。 前提条件 保证华为云帐号不欠费。在ModelArts Pro控制台开发应用时,会占用OBS资源,需要收取一定费用,收费规则请参见OBS价格详情。
由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。 标注数据 训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。
模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过
详细指导 准备数据 在使用通用实体抽取工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS中。 准备数据 选择数据 在使用通用实体抽取工作流开发应用时,您需要新建或导入数据集,后续训练模型操作是基于您选择的数据集。 选择数据 训练模型 选择训练数据后,基于已标注的训练数据
模型训练的数据,上传至OBS中。 准备数据 选择数据 在使用无监督车牌检测工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,选择
HiLens安全帽检测工作流说明 流程 说明 详细指导 选择数据 在使用HiLens安全帽检测工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 选择数据 训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练安全帽检测模型。
模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过
模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过
模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过