检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
请检查CUDA_VISIBLE_DEVICES设置的值是否与作业规格匹配。例如您选择4卡规格的作业,实际可用的卡ID为0、1、2、3,但是您在进行cuda相关的运算时,例如"tensor.to(device="cuda:7")",将张量搬到了7号GPU卡上,超过了实际可用的ID号。 如果cuda相关运
反向提示词,图像生成过程中应避免的提示 否 无 num_inference_steps 推理步骤数,控制推理的步数 否 40 height 生成图像的纵向分辨率 否 1024 width 生成图像的横向分辨率 否 1024 high_noise_frac 高噪声比例,即基础模型跑的步数占总步数的比例 否
错“RuntimeError: connect() timed out”。 原因分析 出现该问题的可能原因如下: 如果在此之前是有进行数据复制的,每个节点复制的速度不是同一个时间完成的,然后有的节点没有复制完,其他节点进行torch.distributed.init_process_group()导致超时。
必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。
initialized”。 原因分析 按照之前支撑的经验,出现该问题的可能原因如下: 绝大部分都是确实是显存不够用。 还有较少数原因是节点故障,跑到特定节点必现OOM,其他节点正常。 处理方法 如果是正常的OOM,就需要修改一些超参,释放一些不需要的tensor。 修改网络参数,比如bat
directory 原因分析 编译生成so文件的cuda版本与训练作业的cuda版本不一致。 处理方法 编译环境的cuda版本与训练环境不一致,训练作业运行就会报错。例如:使用cuda版本为10的开发环境tf-1.13中编译生成的so包,在cuda版本为9.0训练环境中tf-1
用系统默认里面自带的。 如果必须指定卡ID,需要注意1/2/4规格下,指定的卡ID与实际分配的卡ID不匹配的情况。 如果上述方法还出现了错误,可以去notebook里面调试打印CUDA_VISIBLE_DEVICES变量,或者用以下代码测试,查看结果是否返回的是True。 import
ComfyUI是一款基于节点工作流的Stable Diffusion操作界面。通过将Stable Diffusion的流程巧妙分解成各个节点,成功实现了工作流的精确定制和可靠复现。每一个节点都有特定的功能,可以通过调整节点连接达到不同的出图效果。在图像生成方面,它不仅比传统的WebUI更迅速,而且显存占用更为经济。
后,由于用户AI开发业务的变化,对于资源池资源量的需求可能会产生变化,面对这种场景,ModelArts提供了扩缩容功能,用户可以根据自己的需求动态调整。 升级Lite Cluster资源池驱动:当资源池中的节点含有GPU/Ascend资源时,用户基于自己的业务,可能会有自定义GP
subprocess” 问题现象 在使用pytorch启动多进程的时候,出现如下报错: RuntimeError: Cannot re-initialize CUDA in forked subprocess 原因分析 出现该问题的可能原因如下: multiprocessing启动方式有误。
供轻量级的虚拟化,以便隔离进程和资源。尽管容器技术已经出现很久,却是随着Docker的出现而变得广为人知。Docker是第一个使容器能在不同机器之间移植的系统。它不仅简化了打包应用的流程,也简化了打包应用的库和依赖,甚至整个操作系统的文件系统能被打包成一个简单的可移植的包,这个包
Standard推理服务支持VPC直连的高速访问通道配置 背景说明 访问在线服务的实际业务中,用户可能会存在如下需求: 高吞吐量、低时延 TCP或者RPC请求 因此,ModelArts提供了VPC直连的高速访问通道功能以满足用户的需求。 使用VPC直连的高速访问通道,用户的业务请求不需要经过推理
如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。 如果是触发了欧拉操作系统的限制,有如下建议措施。 分目录处理,减少单个目录文件量。 减慢创建文件的速度。 关闭ext4文件系统的dir_index属性,具体可参考:https://access.redhat
根据界面提示填写相关信息,然后单击“立即注册”。 “镜像源”选择构建好的镜像。可直接复制完整的SWR地址,或单击选择SWR构建好的镜像进行注册。 图2 选择镜像源 “架构”和“类型”:根据自定义镜像的实际框架选择。 注册后的镜像会显示在ModelArts“镜像管理”页面。 父主题: 制作自定义镜像用于创建Notebook
[Errno xx] Broken pipe”。 原因分析 出现该问题的可能原因如下: 在大规模分布式作业上,每个节点都在拷贝同一个桶的文件,导致OBS桶限流。 OBS Client连接数过多,进程/线程之间的轮询,导致一个OBS Client与服务端连接30S内无响应,超过超时时间,服务端断开了连接。
产品优势 ModelArts服务具有以下产品优势。 稳定安全的算力底座,极快至简的模型训练 支持万节点计算集群管理 大规模分布式训练能力,加速大模型研发 提供高性价比国产算力 多年软硬件经验沉淀,AI场景极致优化 加速套件,训练、推理、数据访问多维度加速 一站式端到端生产工具链,一致性开发体验
如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。 如果是触发了欧拉操作系统的限制,有如下建议措施。 分目录处理,减少单个目录文件量。 减慢创建文件的速度。 关闭ext4文件系统的dir_index属性,具体可参考:https://access.redhat
k实例。 创建成功后,Notebook实例的状态为“运行中”,单击操作列的“打开”,访问JupyterLab。 图2 打开Notebook实例 进入JupyterLab页面后,自动打开Launcher页面,如下图所示。您可以使用开源支持的所有功能,详细操作指导可参见JupyterLab官网文档。
景。 Standard的模型训练功能提供了界面化的训练调试环境和生产环境,用户可以使用自己的数据和算法,利用Standard提供的计算资源开展模型训练。具体请参见使用ModelArts Standard训练模型。 Standard的推理部署功能提供了界面化的推理部署生产环境,AI
开启滚动:单击开启后,支持滚动升级的方式进行驱动升级。当前支持“按节点比例”和“按节点数量”两种滚动方式。 按节点比例:每批次驱动升级的节点数量为“节点比例*资源池节点总数”。 按节点数量:每批次驱动升级的节点数量为设置的节点数量。 对于不同的升级方式,滚动升级选择节点的策略会不同: 如果升级