检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
针对调用的大模型,平台提供了统一的管理功能。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调用失败的次数、调用
模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
生成的内容结尾必须要引导观众购买; 6.生成的内容必须紧扣产品本身,突出产品的特点,不能出现不相关的内容; 7.生成的内容必须完整,必须涵盖产品介绍中的每个关键点,不能丢失任何有价值的细节; 8.生成的内容必须符合客观事实,不能存在事实性错误; 9.生成的内容必须语言通顺; 10.生成的内容中不能出现“带货口播”等这一类字样;
工作空间功能旨在为用户提供灵活、高效的资产管理与协作方式。平台支持用户根据业务需求或团队结构,自定义创建独立的工作空间。 每个工作空间在资产层面完全隔离,确保资产的安全性和操作的独立性,有效避免交叉干扰或权限错配带来的风险。用户可以结合实际使用场景,如不同的项目管理、部门运营或特定的研发需求,划分出
高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的获取、加工、合成、标注、配比、评估、发布等环节,成为数据开发中不可或缺的重要步骤。 数据工程操作流程见图1、表1。
在不同场景中的最大化利用。为进一步优化资源的管理,平台还提供了多种角色权限体系。用户可以根据自身角色从管理者到各模块人员进行不同层级的权限配置,确保每个用户在其指定的工作空间内,拥有合适的访问与操作权限。这种精细化的权限管理方式,既保证了数据的安全性,又提高了资源的高效利用。 在
型效果的有效策略,一个好的提示词能极大地激发模型的潜能,使其在特定任务上表现出色。接下来,我们将深入探讨提示词优化的方法和技巧,帮助您更好地驾驭模型,实现高质量的任务完成。 优化提升词一般可以从以下几个方面开始: 选择合适的提示词模板 根据任务类型选择提示词模板:不同类型的任务可
ss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设
型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类
发布文本类数据集 数据发布是将数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 文本类数据集支持发布的格式为: 标准格式:数据工程功能支持的原始格式。 标准格式的示例如下,其中,context和target是键值对。 {"context": "你好,请介绍自己"
推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。 模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。
在实际应用中,首次微调所得的模型往往无法取得最佳效果,为了让模型能更好地解决特定场景任务,通常需要根据微调所得模型的效果情况来进行几轮的模型微调优化迭代。 在大模型的微调效果调优过程中,训练数据优化、训练超参数优化、提示词优化以及推理参数优化是最重要的几个步骤。 训练数据的优化是提升模型效果的基础。
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如
包年/包月和按需计费模式可针对不同业务需求进行选择: 对于长时间且稳定的业务需求,包年/包月模式通常更划算,因为它能提供更低的平均成本和一定的稳定性。 对于短期、突发或不可预测的业务需求,按需计费模式则更为合适,因为它提供了更高的灵活性和避免长期预付费可能带来的压力。 父主题: 计费FAQ
据,确保数据的准确性与一致性,从而提高数据质量,为模型训练提供可靠的输入。 扩展数据集的多样性和泛化能力 在数据量不足或样本不平衡的情况下,数据合成可以生成新数据,扩展数据集的规模和多样性。通过增加数据的多样性,能够提升模型在各种场景下的泛化能力,增强其对未知数据的适应性。 增强模型训练的有效性
本节介绍盘古大模型服务在使用过程中的约束和限制。 规格限制 盘古大模型服务的规格限制详见表1。 表1 规格限制 资产、资源类型 规格 说明 模型资产、数据资源、训练资源、推理资源 所有按需计费、包年/包月中的模型资产、数据资源、训练资源、推理资源。 购买的所有类型的资产与资源仅支持在西南-贵阳一区域使用。
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,