检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
0, "data_path" : "/test-obs/classify/input/animals/" } ], "description" : "", "work_path" : "/test-obs/classify/output/", "work_path_type"
输入数据的名称,支持1到64位只包含英文、数字、下划线(_)和中划线(-)的字符。 type String 输入项类型。枚举值如下: dataset:数据集 obs:OBS data_selector:数据选择 data Object 输入项数据。 value Object 输入项的值。 表7 JobOutput
String 数据来源。可选值如下: obs:OBS桶(默认值) dws:GaussDB(DWS)服务 dli:DLI服务 rds:RDS服务 mrs:MRS服务 inference:推理服务 import_path 是 String 导入的OBS路径或manifest路径。 导入m
必填,单击右边的“选择”,从容器镜像中选择上一步上传到SWR的镜像。 代码目录 选择训练代码文件所在的OBS目录。如果自定义镜像中不含训练代码则需要配置该参数,如果自定义镜像中已包含训练代码则不需要配置。 需要提前将代码上传至OBS桶中,目录内文件总大小要小于或等于5GB,文件数要小于或等于1000个,文件深度要小于或等于32。
下划线(_)和中划线(-),并且以英文开头的名称。 type 是 String 数据来源类型。枚举值如下: dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions 否
/home/ma-user/etc/ssh_host_rsa_key0 将准备好的sshd启动脚本文件上传至OBS的训练代码目录下。 创建自定义镜像训练作业。 “代码目录”选择存有sshd启动脚本文件的OBS地址。 “启动命令”需要适配sshd启动脚本,如下所示: bash ${MA_JOB_DI
Dockerfile中的"https://${bucket_name}.obs.cn-north-4.myhuaweicloud.com/${folder_name}/pytorch.tar.gz",需要替换为1中pytorch.tar.gz在OBS上的路径(需将文件设置为公共读)。 进入Docker
场景介绍 ChatGLM3-6B大模型是一个包含多种参数数量模型的语言模型。 方案概览 本文档以ChatGLM3-6B(以下简称GLM3-6B)为例,利用训练框架Pytorch_npu+华为自研Ascend Snt9b硬件,为用户提供了开箱即用的预训练和全量微调方案。 本方案目前
h", "dataset_id" : "gfghHSokody6AJigS5A", "import_path" : "obs://test-obs/daoLu_images/animals/", "import_type" : 0, "total_sample_count"
在“训练作业”页面,删除运行结束的训练作业。您可以单击“操作”列的“删除”,在弹出的提示框中,输入DELETE,单击“确定”,删除对应的训练作业。 进入OBS,删除本训练作业使用的OBS桶及文件。 查找训练作业 当用户使用IAM账号登录时,训练作业列表会显示IAM账号下所有训练作业。ModelArts提供查找训练作业功能帮助用户快速查找训练作业。
print(predictor_list) 参数说明 表1 查询检索参数说明 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法见Session鉴权。 service_id 否 String 服务ID,默认不过滤服务ID。 service_name 否 String
下输入一个文件夹名称,例如:demo。挂载时,后台自动会在Notebook容器“的/data/”目录下创建该文件夹,用来挂载OBS文件系统。 选择存放OBS并行文件系统下的文件夹,单击“确定”。 挂载成功后,可以在Notebook实例详情页查看到挂载结果。 代码调试。 打开Not
String 数据集输出位置,用于存放输出的标注信息等文件。此位置为OBS路径,格式为“/桶名称/文件路径”。例如:“/obs-bucket”。 work_path_type Integer 数据集输出路径类型。默认值为0,表示OBS桶。 workforce_descriptor WorkforceDescriptor
场景介绍 Llama2(Large Language Model Meta AI)是由Meta AI发布的新一代大语言系列模型,上下文长度由Llama的2048扩展到了4096,可以理解和生成更长的文本。Llama2包含了70亿、130亿和700亿参数的模型,即:Llama2-7
"dataset_id" : "gfghHSokody6AJigS5A", "import_path" : "obs://test-obs/daoLu_images/animals/", "import_type" : 0, "total_sample_count"
场景介绍 Baichuan2是百川智能推出的 新一代Q开源大语言模型,采用 2.6 万亿 Tokens 的高质量语料训练。在多个权威的中文、英文和多语言的通用、领域 benchmark 上取得同尺寸最佳的效果。包含有 7B、13B 的 Base 和 Chat 版本,并提供了 Chat
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
5-72B √ x Qwen2.5-32B √ √ 前提条件 在“我的模型”页面存在已创建成功的模型。 已准备好用于存放压缩后模型权重文件的OBS桶,OBS桶必须和MaaS服务在同一个Region下。 创建压缩作业 登录ModelArts Studio控制台,在顶部导航栏选择目标区域。
操作步骤 打开ModelArts Notebook。 选中Notebook文件(ipynb文件),创建定时任务。 图1 打开Notebook Jobs 在Create Job界面,填写参数后单击“create”。 图2 创建定时任务参数填写 Job name:定时任务名称。 Enviro
发布后可获得数据集A和数据集B的Manifest文件。可通过数据集的“数据集输出位置”获得此文件。 创建一个空数据集C,即无任何输出,其输入位置选择一个空的OBS文件夹。 在数据集C中,执行导入数据操作,将数据集A和数据集B的Manifest文件导入。 导入完成后,即将数据集A和数据集B的数据分别都