检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在Workflow中更新已部署的服务 场景介绍 大部分场景下的工作流都是第一次运行部署新服务,后续进行模型迭代时,需要对已部署的服务进行更新。因此需要在同一条工作流中,同时支持服务的部署及更新能力。 编写工作流 基于编写工作流代码示例的场景案例进行改造,代码编写示例如下: from
查看训练效果 启动模型微调任务后,在微调大师列表单击操作列的“任务详情”,在弹窗中选择“指标效果”页签,可以查看训练效果。 表2 训练效果的指标介绍 指标名称 指标说明 NPU/GPU利用率 在训练过程中,机器的NPU/GPU占用情况(横坐标时间,纵坐标占用率)。 显存利用率 在训练过
env来构建环境,也可以通过pip install、conda install等方式安装conda环境的依赖。 更多ModelArts自定义镜像介绍请见自定义镜像简介。 调试要点 确认对应的脚本、代码、流程在linux服务器上运行正常。 如果在linux服务器上运行就有问题,那么先调通以后再做容器镜像。
查询数据集版本详情 功能介绍 查询数据集版本详情。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/datasets/{da
警作用。 设置ModelArts服务和模型的告警规则包括设置告警规则名称、监控对象、监控指标、告警阈值、监控周期和是否发送通知等参数。本节介绍了设置ModelArts服务和模型告警规则的具体方法。 只有“运行中”的在线服务,支持对接CES监控。 前提条件: 已创建ModelArts在线服务。
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
e Lite的接口即可。 MindSpore Lite提供了Python、C++以及JAVA三种应用开发接口,此处以Python接口为例,介绍如何使用MindSpore Lite Python API构建并推理Stable Diffusion模型,更多信息请参考MindSpore
境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以下参数取值主要以llama2-70b预训练为例,请根据实际模型修改。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
查询训练作业版本详情 功能介绍 根据作业ID查看指定的训练作业详情。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions/{version_id} 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id
境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例: 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH
创建Workflow数据集标注节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的标注功能。数据集标注节点主要用于创建标注任务或对已有的标注任务进行卡点标注,主要用于需要对数据进行人工标注的场景。 属性总览 您可以使用LabelingStep来构建数据集标注节点,LabelingStep结构如下:
查询训练作业版本列表 功能介绍 根据作业ID查看指定的训练作业版本。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型 说明 project_id 是 String
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例: 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以下参数取值主要以llama2-70b预训练为例,请根据实际模型修改。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH
环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b 预训练为例。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH