检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
xx为Grafana的所在宿主机的IP地址 图1 Prometheus 在HTTP的URL输入框中输入Prometheus的IP地址和端口号,单击Save&Test: 图2 IP地址和端口号 至此,指标监控方案安装完成。指标监控效果展示如下: 图3 指标监控效果 这里使用的是Grafan
使用VS Code连接实例时,发现VS Code端的实例目录和云上目录不匹配 问题现象 用户使用VS Code连接实例时,发现VS Code端的实例目录和云上目录不匹配。 原因分析 实例连接错误,可能是配置文件写的不规范导致连接到别的实例。 解决方案 检查用户.ssh配置文件(路
在Notebook上安装配置Grafana 适用场景 本章节适用于在ModelArts Standard的Notebook中安装配置Grafana。 前提条件 已创建CPU或GPU类型的Notebook实例,并处于运行中。 打开Terminal。 操作步骤 在Terminal中依次执行以下命令,下载并安装Grafana。
创建模型不同方式的场景介绍 AI开发和调优往往需要大量的迭代和调试,数据集、训练代码或参数的变化都可能会影响模型的质量,如不能统一管理开发流程元数据,可能会出现无法重现最优模型的现象。 ModelArts的模型可导入所有训练生成的元模型、上传至对象存储服务(OBS)中的元模型和容器镜
梯度监控工具提供了将模型梯度数据导出的能力。使用梯度监控工具,可以实现对训练过程模型每一层梯度信息进行监控,目前支持两种能力: 将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。
团队标注功能当前仅支持“图像分类”、“物体检测”、“文本分类”、“命名实体”、“文本三元组”、“语音分割”类型的数据集。 针对启用团队标注功能的数据标注任务,支持创建团队标注任务,将标注任务指派给不同的团队,由多人完成标注任务。同时,在成员进行数据标注过程中,支持发起验收、继续验收以及查看验收报告等功能。
配置Workflow的输入输出目录 功能介绍 统一存储主要用于工作流的目录管理,帮助用户统一管理一个工作流中的所有存储路径,主要分为以下两个功能: 输入目录管理:开发者在编辑开发工作流时可以对所有数据的存储路径做统一管理,规定用户按照自己的目录规划来存放数据,而存储的根目录可以根据用
发环境进行,本地开发的模型需要上传到华为云OBS服务。 创建模型:把模型文件和推理文件导入到ModelArts的模型仓库中,进行版本化管理,并构建为可运行的模型。 部署服务:模型构建完成后,根据您的业务场景,选择将模型部署成对应的服务类型。 将模型部署为实时推理作业 将模型部署为一个Web
导入成功后,在Dashboards下,即可看到导入的视图,单击视图即可打开监控。 模板使用 导入成功后,单击想查看的模板即可查看响应内容。这里介绍一些常用功能的使用。 切换数据源和资源池 图5 切换数据源和资源池 单击红框中相应位置,即可出现下拉框,修改响应的数据源和资源池。 刷新数据 单击右上角的图标,即可刷新整
将本地文件上传,请参考支持上传本地文件; GitHub的开源仓库的文件上传,请参考支持Clone GitHub开源仓库; 存放在OBS中的文件上传,请参考支持上传OBS文件; 类似开源数据集这样的远端文件上传,请参考支持上传远端文件; 在Notebook的使用中,可以快速查找实例,可以在同一个No
下载至本地后才能使用msprof-analyze进行分析,大量数据的下载耗时以及对本地大规格存储盘的要求容易导致分析受阻。基于本章节的分析插件,自动串联高性能挂载OBS至ModelArts环境(秒级)和advisor分析,免去数据下载耗时的同时还提升了挂载文件的读取速度,加快了advisor分析速度。
普通用户:普通用户的委托权限包括了用户使用ModelArts完成AI开发的所有必要功能权限,如数据的访问、训练任务的创建和管理等。一般用户选择此项即可。 自定义:如果对用户有更精细化的权限管理需求,可使用自定义模式灵活按需配置ModelArts创建的委托权限。可以根据实际需在权限列表中勾选要配置的权限。
VS Code中把本地的指定插件安装到远端或把远端插件安装到本地 在VS Code的环境中执行Ctrl+Shift+P 搜install local,按需选择即可 父主题: VS Code使用技巧
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
e.sh 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的 transformers
sh文件,来安装依赖以及下载完整代码。 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的 transformers
e.sh 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的 transformers
sh文件,来安装依赖以及下载完整代码。 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的 transformers
个是在线服务对象,此时在运行态通过开关的方式来控制部署/更新服务,如下图所示: 在线服务开关默认关闭,节点走部署服务的流程;如果需要更新服务,则手动打开开关,选择相应的在线服务即可。 进行服务更新时,需要保证被更新的服务所使用的模型与配置的模型名称相同。 父主题: 开发Workflow命令参考
如何使用soft NMS方法降低目标框堆叠度 目前华为云AI市场订阅的算法中,yolo3可以使用该方法降低目标框堆叠度,yolo5 算法中没有看到相关支持的信息,需要在自定义算法进行使用。 父主题: Standard数据管理