检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
在ModelArts上如何创建引用第三方依赖包的训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip
指令监督微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info
待确认样本数量。 version_id String 数据集版本ID。 version_name String 数据集版本名称。 workspace_id String 工作空间ID。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表13 Event 参数
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
执行微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info
训练作业日志中提示“No module named .*” 用户请按照以下思路进行逐步排查: 检查依赖包是否存在 检查依赖包路径是否能被识别 检查训练作业使用的资源规格是否正确 建议与总结 检查依赖包是否存在 如果依赖包不存在,您可以使用以下两种方式完成依赖包的安装。 方式一(推
待确认样本数量。 version_id String 数据集版本ID。 version_name String 数据集版本名称。 workspace_id String 工作空间ID。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表15 Event 参数
执行训练任务【新】 新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根据自己实际需求进行修改。推荐用户使用该方式进行训练。 权重文件支持以下组合方式,用户根据自己实际要求选择: 训练stage 不加载权重 增量训练:加载权重,不加载优化器(默认开启)
执行训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info
执行训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info
执行训练任务 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info
UDA(由英伟达推出的统一计算架构)计算库,Ascend-Powered-Engine引擎的镜像中安装了与Ascend驱动适配的CANN(华为针对AI场景推出的异构计算架构)计算库。 提交训练作业后,ModelArts Standard平台会自动运行训练作业的启动文件。 Asce
昇腾能力应用地图 ModelArts支持如下开源模型昇腾NPU进行训练和推理。 LLM大语言模型 ModelArts针对以下主流的LLM大模型进行了基于昇腾NPU的适配工作,可以直接使用适配过的模型在NPU上进行推理训练。 表1 LLM模型推理能力 支持模型 支持模型参数量 应用场景
执行训练任务(推荐) 新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根据自己实际需求进行修改。推荐用户使用该方式进行训练。 权重文件支持以下组合方式,用户根据自己实际要求选择: 训练stage 不加载权重 增量训练:加载权重,不加载优化器(默认开启)
demo.sh方式启动(历史版本) 本章节介绍历史版本的训练任务启动方式。6.3.912版本同时兼容历史版本的训练任务启动方式。 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
yaml配置文件参数配置说明 本小节主要详细描述demo_yaml样例配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B
自定义镜像使用场景 在AI业务开发以及运行的过程中,一般都会有复杂的环境依赖需要进行调测并固化。面对开发中的开发环境的脆弱和多轨切换问题,在ModelArts的AI开发最佳实践中,通过容器镜像的方式将运行环境进行固化,以这种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换
什么是Workflow MLOps简介 在介绍Workflow之前,先了解MLOps的概念。 MLOps(Machine Learning Operation)是“机器学习”(Machine Learning)和“DevOps”(Development and Operation