检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook(可选) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.911)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.911)
主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
训练脚本说明 训练启动脚本说明和参数配置【旧】 训练tokenizer文件说明 断点续训和故障快恢说明 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
准备工作 准备环境 准备代码 准备镜像环境 DockerFile构建镜像(可选) 准备数据(可选) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
训练脚本说明参考 训练参数配置说明【旧】 训练tokenizer文件说明 断点续训和故障快恢说明 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
不同模型推荐的参数与NPU卡数设置 表1 不同模型推荐的参数与NPU卡数设置 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具 (Deepspeed) 规格与节点数 Qwen-VL Qwen-VL 7B full 2048 gr
训练脚本说明 训练脚本存放目录说明 不同模型推荐的参数与NPU卡数设置 训练tokenizer文件说明 父主题: Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912)
文生视频模型训练推理 CogVideoX1.5 5b模型基于DevServer适配PyTorch NPU全量训练指导(6.3.912) CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch
性能调优 Profiling数据采集 使用Advisor工具分析生成调优建议 调优前后性能对比 父主题: Dit模型PyTorch迁移与精度性能调优
执行训练任务 执行训练任务(推荐) 执行训练任务(历史版本) 父主题: 工作负载Pod异常
常见错误原因和解决方法 显存溢出错误 网卡名称错误 工作负载Pod异常 mc2融合算子报错 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
内容审核模型训练推理 Bert基于DevServer适配MindSpore Lite推理指导(6.3.910) Yolov8基于DevServer适配MindSpore Lite推理指导(6.3.909) Paraformer基于DevServer适配PyTorch NPU推理指导(6
Dit模型PyTorch迁移与精度性能调优 场景介绍及环境准备 训练迁移适配 精度对齐 性能调优 父主题: GPU业务迁移至昇腾训练推理
文生图模型训练推理 FlUX.1基于DevServer适配PyTorch NPU推理指导(6.3.912) FLUX.1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911) Hunyuan-DiT基于DevServer部署适配PyTorch
精度对齐 长训Loss比对结果 使用Msprobe工具分析偏差 Loss对齐结果 父主题: Dit模型PyTorch迁移与精度性能调优
历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 使用ModelArts PyCharm插件调试训练ResNet50图像分类模型 示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU)