检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
ModelArts导入模型时,如何编写模型配置文件中的安装包依赖参数? 问题描述 从OBS中或者从容器镜像中导入模型时,开发者需要编写模型配置文件。模型配置文件描述模型用途、模型计算框架、模型精度、推理代码依赖包以及模型对外API接口。配置文件为JSON格式。配置文件中的“dep
String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表5 Apps 参数 是否必选 参数类型 描述 app_id 否 String APP的编号,可通过查询APP列表获取。 响应参数 状态码:200
记录中“工具状态”为“下载完成”时表示下载完成,工具包存放在“下载位置”的目录下。 如果下载失败,单击“下载”可以重新下载。 登录云服务器查看工具包是否下载成功。 在云服务详情页面,单击节点页签的选择“前往控制台”跳转到云服务器控制台。 在云服务器控制台的节点基本信息页面,单击右
在“文本分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 图2 运行成功 训练完成后,您可以单击文本分类节点上方的按钮,查看相关指标信息,如“准确率”、“评估结果”等。评估结果参数说明请参见表1。 图3 模型评估报告 表1 评估结果参数说明 参数 说明 recall:召回率
是否必选 参数类型 描述 action 是 Integer 验收行为。可选值如下: 0:通过全部样本 1:驳回全部样本 2:取消验收 3:查看验收冲突的样本列表 4:只通过单张验收通过的样本及未验收的样本 5:只通过单张验收通过的样本 overwrite_last_result 否
#检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.910)
文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
limit 否 String 分页参数limit,表示单次查询的条目数上限。假如要查询20~29条记录,offset为20,limit为10。 offset 否 String 分页参数offset,表示单次查询的条目偏移数量。假如要查询20~29条记录,offset为20,limit为10。
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件